The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Mechanisms underlying LTP of inhibitory synaptic transmission in the deep cerebellar nuclei.

Whole-cell recordings were used to investigate long-term potentiation of inhibitory synaptic currents (IPSCs) in neurons of deep cerebellar nuclei (DCN) in slices. IPSCs were evoked by electrical stimulation of the white matter surrounding the DCN in the presence of non-N-methyl-D-aspartate (non-NMDA) glutamate receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (20 microM). High-frequency stimulation induced a long-term potentation (LTP) of the IPSC amplitude without changing its reversal potential, rise time, and decay-time constant. This LTP did not require the activation of postsynaptic gamma-aminobutyric acid-A (GABA(A)) receptors but depended on the activation of NMDA receptors. LTP of IPSCs in DCN neurons could also be induced by voltage-depolarizing pulses in postsynaptic neurons and appeared to depend on an increase in intracellular calcium as the LTP was blocked when the cells were loaded with a calcium chelator, 1,2-bis-(2-amino-phenoxy)-N,N,N', N'-tetraacetic acid (BAPTA, 10 mM). LTP of IPSCs was accompanied by an increase in the frequency of spontaneous IPSCs and miniature IPSCs (recorded in the presence of tetrodotoxin 1 microM), but there was no significant change in their amplitude. In addition, during the LTP, the amplitude of response to exogenously applied GABA(A) receptor agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol hydrochloride was increased. Intracellular application of tetanus toxin, a powerful blocker of exocytosis, in DCN neuron prevented the induction of LTP of IPSCs. Our results suggest that the induction of LTP of IPSCs in the DCN neurons likely involves a postsynaptic locus. Plasticity of inhibitory synaptic transmission in DCN neurons may play a crucial role in cerebellar control of motor coordination and learning.[1]

References

 
WikiGenes - Universities