The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Pain behavior and response properties of spinal dorsal horn neurons following experimental diabetic neuropathy in the rat: modulation by nitecapone, a COMT inhibitor with antioxidant properties.

We attempted to characterize a spinal neuronal correlate of painful neuropathy induced by diabetes mellitus (DM). Pain behavior and response properties of spinal dorsal horn neurons were determined in rats with a streptozocin-induced DM. A catechol-O-methyltransferase inhibitor with potent antioxidant properties, nitecapone, was used in an attempt to attenuate neuropathic symptoms. Behaviorally DM induced mechanical hypersensitivity that was markedly attenuated by oral treatment with nitecapone. The antihyperalgesic effect of nitecapone was not reversed by naloxone, an opioid antagonist, or atipamezole, an alpha-2-adrenoceptor antagonist. Electrophysiological recordings performed in pentobarbitone-anesthetized animals revealed that the most distinct abnormality in response properties of spinal dorsal horn wide-dynamic range (WDR) neurons was the increase in their spontaneous activity observed in untreated but not in nitecapone-treated DM rats. Conditioning electrical stimulation and a lidocaine block of the rostroventromedial medulla (RVM) had a similar modulatory effect on evoked responses of spinal dorsal horn WDR neurons in all experimental groups. The response properties of spinal dorsal horn nociceptive-specific or low-threshold mechanoreceptive neurons were not markedly different between the experimental groups. The results indicate that increased spontaneous activity in spinal dorsal horn WDR neurons may be causally related to behaviorally observed mechanical hypersensitivity in DM. Attenuation of the increased spontaneous activity in WDR neurons may explain the antihyperalgesic effect by nitecapone, due to naloxone- and alpha-2-adrenoceptor-insensitive mechanisms. DM or nitecapone treatment did not produce significant changes in phasic or tonic descending pain regulation originating in the RVM.[1]

References

 
WikiGenes - Universities