The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Functional analysis of yersiniabactin transport genes of Yersinia enterocolitica.

Yersinia enterocolitica O:8, biogroup (BG) IB, strain WA-C carries a high-pathogenicity island (HPI) including iron-repressible genes (irp1-9, fyuA) for biosynthesis and uptake of the siderophore yersiniabactin (Ybt). The authors report the functional analysis of irp6,7,8, which show 98-99% similarity to the corresponding genes ybtP,Q,X on the HPI of Yersinia pestis. It was demonstrated that irp6,7 are involved in ferric (Fe)-Ybt utilization and mouse virulence of Y. enterocolitica, thus confirming corresponding results for Y. pestis. Additionally it was shown that inactivation of the ampG-like gene irp8 did not affect either Fe-Ybt utilization or mouse virulence. To determine whether irp6, irp7 and fyuA (encoding the outer-membrane Fe-Ybt/pesticin receptor FyuA) are sufficient to mediate Fe-Ybt transport/utilization, these genes were transferred into Escherichia coli entD,F and into non-pathogenic Y. enterocolitica, BG IA, strain NF-O. Surprisingly, E. coli entD,F but not Y. enterocolitica NF-O gained the capability to utilize exogenous Fe-Ybt as a result of this gene transfer, although both strains expressed functional FyuA (pesticin sensitivity). These results suggest that besides irp6, irp7 and fyuA, additional genes are required for sufficient Fe-Ybt transport/utilization. Finally, it was shown that irp6, irp7 and fyuA but not irp8 are involved in controlling Ybt biosynthesis and fyuA gene expression: irp6 and/or irp7 mutation leads to upregulation whereas fyuA mutation leads to downregulation. However, fyuA-dependent control of Ybt biosynthesis could be bypassed in a fyuA mutant by ingredients of chrome azurol S (CAS) siderophore indicator agar.[1]

References

  1. Functional analysis of yersiniabactin transport genes of Yersinia enterocolitica. Brem, D., Pelludat, C., Rakin, A., Jacobi, C.A., Heesemann, J. Microbiology (Reading, Engl.) (2001) [Pubmed]
 
WikiGenes - Universities