The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Physiological importance of system A-mediated amino acid transport to rat fetal development.

Fetal growth and development are dependent on the delivery of amino acids from maternal amino acid pools to the fetal blood. This is accomplished via transfer across the apical and basal plasma membrane of the placental syncytiotrophoblast. The aim of this study was to determine whether inhibition of system A (amino acid transporter) was associated with a decrease in fetal weight in the rat. System A is a ubiquitous Na(+)-dependent amino acid transporter that actively transports small zwitterionic amino acids. In brief, system A was inhibited by infusing a nonmetabolizable synthetic amino acid analog, 2-(methylamino)isobutyric acid from days 7-20 of gestation. On day 20, the rats were killed and tissues (maternal liver, fetuses, and placentas) were collected for analysis. The degree of system A inhibition was determined, as was the impact of said inhibition on fetal and maternal weights, system A-mediated placental transport, and placental system A-mediated transporter expression. Our results suggest that when system A is inhibited, fetal weight is diminished [control group: -3.55 +/- 0.04 g (n = 113), experimental group: -3.29 +/- 0.04 g (n = 128)], implying an integral role for system A transport in fetal growth and development in the rat.[1]


  1. Physiological importance of system A-mediated amino acid transport to rat fetal development. Cramer, S., Beveridge, M., Kilberg, M., Novak, D. Am. J. Physiol., Cell Physiol. (2002) [Pubmed]
WikiGenes - Universities