Physiological importance of system A-mediated amino acid transport to rat fetal development.
Fetal growth and development are dependent on the delivery of amino acids from maternal amino acid pools to the fetal blood. This is accomplished via transfer across the apical and basal plasma membrane of the placental syncytiotrophoblast. The aim of this study was to determine whether inhibition of system A (amino acid transporter) was associated with a decrease in fetal weight in the rat. System A is a ubiquitous Na(+)-dependent amino acid transporter that actively transports small zwitterionic amino acids. In brief, system A was inhibited by infusing a nonmetabolizable synthetic amino acid analog, 2-(methylamino)isobutyric acid from days 7-20 of gestation. On day 20, the rats were killed and tissues (maternal liver, fetuses, and placentas) were collected for analysis. The degree of system A inhibition was determined, as was the impact of said inhibition on fetal and maternal weights, system A-mediated placental transport, and placental system A-mediated transporter expression. Our results suggest that when system A is inhibited, fetal weight is diminished [control group: -3.55 +/- 0.04 g (n = 113), experimental group: -3.29 +/- 0.04 g (n = 128)], implying an integral role for system A transport in fetal growth and development in the rat.[1]References
- Physiological importance of system A-mediated amino acid transport to rat fetal development. Cramer, S., Beveridge, M., Kilberg, M., Novak, D. Am. J. Physiol., Cell Physiol. (2002) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg