The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Mechanisms controlling cell cycle arrest and induction of apoptosis after 12-lipoxygenase inhibition in prostate cancer cells.

Extensive studies have implicated the role of dietary fatty acids in prostatecancer progression. Platelet-type 12-Lipoxygenase (12-LOX) has beenshown to regulate growth, metastasis, and angiogenesis of prostate cancer. The effect of two 12-LOX inhibitors, Baicalein and N-benzyl-N-hydroxy-5-phenylpentamide (BHPP), on the mechanisms controlling cell cycle progression and apoptosis were examined in two prostate cancer cell lines, PC3 and DU-145. Treatment with Baicalein or BHPP resulted in a dose-dependent decrease in cell proliferation, as measured by BrdUrd incorporation. This growth arrest was shown to be because of cell cycle inhibition at G0/G1, and was associated with suppression of cyclin D1 and D3 protein levels. PC3 cells also showed a strong decrease in phosphorylated retinoblastoma (pRB) protein, whereas the other retinoblastoma-associated proteins, p107 and p130, were inhibited in DU-145 cells. Treatment with 12-hydroxyeicosatetraenoic acid in the presence of Baicalein blocked loss of pRB, whereas 12(S)-HETE alone induced pRB expression. Treatment with either Baicalein or BHPP resulted in significant apoptosis in both cell lines as measured by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling. DU-145 cells underwent apoptosis more rapidly than PC-3 cells. The mechanisms involved were decreased phosphorylation of Akt, loss of survivin and subsequent activation of caspase-3 and caspase-7 in each cell line, decreased Bcl-2 and Bcl-X(L) expression in DU-145, and a shift in Bcl-2/Bax levels favoring apoptosis in PC-3 cells. Addition of 12(S)-HETE protected both cell lines from Baicalein-induced apoptosis, whereas other LOX metabolites, 5(S)-HETE, or 15(S)-HETE did not. These results show that the 12-LOX pathway is a critical regulator of prostate cancer progression and apoptosis, by affecting various proteins regulating these processes. Therefore, inhibition of 12-LOX is a potential therapeutic agent in the treatment of prostate cancer.[1]

References

 
WikiGenes - Universities