The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Regulation of the human sperm tyrosine kinase c-yes. Activation by cyclic adenosine 3',5'-monophosphate and inhibition by Ca(2+).

During the process of capacitation, spermatozoa go through a whole set of signaling cascade events in order to become fully competent at fertilizing the egg. An increase in sperm protein tyrosine phosphorylation has been described during this final maturational event in different animal species as well as in humans. Although the phosphotyrosine content of sperm protein is modulated by cAMP, Ca(2+), BSA, oxygen derivatives, and cholesterol, no protein tyrosine kinase ( PTK) nor the phosphotyrosine protein phosphatase (PTPase) directly involved in the control of the phosphotyrosine content of sperm protein has been identified. Therefore, the goal of the present study was to identify the tyrosine kinases putatively responsible for the increases in sperm protein phosphotyrosine content. In the present study, we show that the src-related tyrosine kinase c-yes is present in the head of human spermatozoa in both membranes and Triton X-100-insoluble extracts. Our hypothesis was that c-yes is a tyrosine kinase responsible for at least some of the capacitation-induced increase in protein tyrosine phosphorylation. When spermatozoa were previously incubated in the presence of 3-isobutyl-1-methylxanthine or 1,2-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid, treatments known to increase the phosphotyrosine content of human sperm proteins, an increase in the kinase activity of immunoprecipitated yes was measured using enolase as a substrate. These results suggest that cAMP activates while Ca(2+) inhibits human sperm c-yes kinase activity.[1]

References

 
WikiGenes - Universities