Transcriptional control of viral gene therapy by cisplatin.
Ionizing radiation (IR) and radical oxygen intermediates (ROIs) activate the early growth response-1 ( Egr1) promoter through specific cis-acting sequences termed CArG elements. Ad.Egr.TNF.11D, a replication-deficient adenoviral vector containing CArG elements cloned upstream of the cDNA for human recombinant TNF-alpha was used to treat human esophageal adenocarcinoma and rat colon adenocarcinoma cells in culture and as xenografts in athymic nude mice. Cisplatin, a commonly used chemotherapeutic agent, causes tumor cell death by producing DNA damage and generating ROIs. The present studies demonstrate induction of TNF-alpha production in tumor cells and xenografts treated with the combination of Ad.Egr.TNF.11D and cisplatin. The results show that the Egr1 promoter is induced by cisplatin and that this induction is mediated in part through the CArG elements. These studies also demonstrate an enhanced antitumor response without an increase in toxicity following treatment with Ad.Egr.TNF.11D and cisplatin, compared with either agent alone. Chemo-inducible cancer gene therapy thus provides a means to control transgene expression while enhancing the effectiveness of commonly used chemotherapeutic agents.[1]References
- Transcriptional control of viral gene therapy by cisplatin. Park, J.O., Lopez, C.A., Gupta, V.K., Brown, C.K., Mauceri, H.J., Darga, T.E., Manan, A., Hellman, S., Posner, M.C., Kufe, D.W., Weichselbaum, R.R. J. Clin. Invest. (2002) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg