The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Genes, Neoplasm

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Genes, Neoplasm


High impact information on Genes, Neoplasm

  • These results suggest that combined delivery of two cooperating genes like p16 and p53 could be the basis for the development of a new strategy for cancer gene therapy [6].
  • These data suggest that viral vector transduction of the dCK gene followed by treatment with ara-C represents a new chemosensitization strategy for cancer gene therapy [7].
  • Probability of carrying a mutation of breast-ovarian cancer gene BRCA1 based on family history [8].
  • BRCA2 as a low-penetrance cancer gene [9].
  • This evidence now supports the placement of telomerase among the cancer gene elite [10].

Chemical compound and disease context of Genes, Neoplasm


Biological context of Genes, Neoplasm

  • This may suggest that there is a second tumor suppressor or recessive cancer gene on chromosome 13 in bladder cancer and/or that the mechanism of RB inactivation in bladder cancer frequently involves independent mutations of each RB allele [16].
  • These observations strongly support that p16INK4 is a tumor suppressor gene and is a candidate for cancer gene replacement therapy [17].
  • The finding of frequent epigenetic inactivation of RASSF1A in papillary RCCs despite previous studies reporting infrequent 3p21 allele loss in this tumor type illustrates how the systematic identification of all major human cancer genes will require detailed analysis of the cancer genome and epigenome [18].
  • When expressed alone, E4orf4 induces a novel form of p53-independent apoptosis in cancer cells but not in normal human cells, thus making it of potential use in cancer gene therapy [19].
  • We constructed an adenoviral vector containing human p16 cDNA in order to evaluate the cytotoxic effects of exogenous p16 expression on cancer cell proliferation and to explore the potential use of p16 in cancer gene therapy [20].

Anatomical context of Genes, Neoplasm

  • To develop a novel cancer gene therapy strategy based on suppression of tumor angiogenesis, we examined the feasibility of targeting and preferential killing of proliferating endothelial cells by use of the von Willebrand factor (vWf) promoter and herpes simplex virus thymidine kinase gene (HSV-TK) [21].
  • This mouse model not only demonstrates the depletion of CD4(+) T cells as a useful strategy for cancer gene therapy with interleukin-12 but also provides a model for human melanoma-associated vitiligo.J Invest Dermatol 115:1059-1064 2000[22]
  • A candidate for cancer gene therapy: MIP-1 alpha gene transfer to an adenocarcinoma cell line reduced tumorigenicity and induced protective immunity in immunocompetent mice [23].
  • Additionally, the characterization of the recovered mutants and a comparison of the mutation spectrum in the rat lymphocyte system to the spectrum in cancer genes, such as H-ras and p53, and the spectrum in transgenic systems, such as lacI, are included [24].

Associations of Genes, Neoplasm with chemical compounds


Gene context of Genes, Neoplasm


Analytical, diagnostic and therapeutic context of Genes, Neoplasm


  1. Cancer gene therapy using a survivin mutant adenovirus. Mesri, M., Wall, N.R., Li, J., Kim, R.W., Altieri, D.C. J. Clin. Invest. (2001) [Pubmed]
  2. Towards cloning the familial breast-ovarian cancer gene on chromosome 17. Brown, M.A., Solomon, E. Curr. Opin. Genet. Dev. (1994) [Pubmed]
  3. Cooperating cancer-gene identification through oncogenic-retrovirus-induced insertional mutagenesis. Du, Y., Spence, S.E., Jenkins, N.A., Copeland, N.G. Blood (2005) [Pubmed]
  4. Close mapping of the focal non-epidermolytic palmoplantar keratoderma (PPK) locus associated with oesophageal cancer (TOC). Kelsell, D.P., Risk, J.M., Leigh, I.M., Stevens, H.P., Ellis, A., Hennies, H.C., Reis, A., Weissenbach, J., Bishop, D.T., Spurr, N.K., Field, J.K. Hum. Mol. Genet. (1996) [Pubmed]
  5. Monosomy 7 myeloproliferative disease in children with neurofibromatosis, type 1: epidemiology and molecular analysis. Shannon, K.M., Watterson, J., Johnson, P., O'Connell, P., Lange, B., Shah, N., Steinherz, P., Kan, Y.W., Priest, J.R. Blood (1992) [Pubmed]
  6. Adenovirally transferred p16INK4/CDKN2 and p53 genes cooperate to induce apoptotic tumor cell death. Sandig, V., Brand, K., Herwig, S., Lukas, J., Bartek, J., Strauss, M. Nat. Med. (1997) [Pubmed]
  7. Viral vector transduction of the human deoxycytidine kinase cDNA sensitizes glioma cells to the cytotoxic effects of cytosine arabinoside in vitro and in vivo. Manome, Y., Wen, P.Y., Dong, Y., Tanaka, T., Mitchell, B.S., Kufe, D.W., Fine, H.A. Nat. Med. (1996) [Pubmed]
  8. Probability of carrying a mutation of breast-ovarian cancer gene BRCA1 based on family history. Berry, D.A., Parmigiani, G., Sanchez, J., Schildkraut, J., Winer, E. J. Natl. Cancer Inst. (1997) [Pubmed]
  9. BRCA2 as a low-penetrance cancer gene. Boyd, J. J. Natl. Cancer Inst. (1996) [Pubmed]
  10. Telomerase activation. One step on the road to cancer? Greider, C.W. Trends Genet. (1999) [Pubmed]
  11. Bystander effect in herpes simplex virus-thymidine kinase/ganciclovir cancer gene therapy: role of gap-junctional intercellular communication. Mesnil, M., Yamasaki, H. Cancer Res. (2000) [Pubmed]
  12. 5-Fluorouracil efficiently enhanced apoptosis induced by adenovirus-mediated transfer of caspase-8 in DLD-1 colon cancer cells. Uchida, H., Shinoura, N., Kitayama, J., Watanabe, T., Nagawa, H., Hamada, H. The journal of gene medicine. (2003) [Pubmed]
  13. Bifidobacterium longum as a delivery system for cancer gene therapy: selective localization and growth in hypoxic tumors. Yazawa, K., Fujimori, M., Amano, J., Kano, Y., Taniguchi, S. Cancer Gene Ther. (2000) [Pubmed]
  14. Pharmacologic suppression of target cell recognition by engineered T cells expressing chimeric T-cell receptors. Alvarez-Vallina, L., Yañez, R., Blanco, B., Gil, M., Russell, S.J. Cancer Gene Ther. (2000) [Pubmed]
  15. Crystal structure to 1.7 a of the Escherichia coli pyrimidine nucleoside hydrolase YeiK, a novel candidate for cancer gene therapy. Giabbai, B., Degano, M. Structure (Camb.) (2004) [Pubmed]
  16. Inactivation of the retinoblastoma gene in human bladder and renal cell carcinomas. Ishikawa, J., Xu, H.J., Hu, S.X., Yandell, D.W., Maeda, S., Kamidono, S., Benedict, W.F., Takahashi, R. Cancer Res. (1991) [Pubmed]
  17. Cell cycle arrest and inhibition of tumor cell proliferation by the p16INK4 gene mediated by an adenovirus vector. Jin, X., Nguyen, D., Zhang, W.W., Kyritsis, A.P., Roth, J.A. Cancer Res. (1995) [Pubmed]
  18. Epigenetic inactivation of the RASSF1A 3p21.3 tumor suppressor gene in both clear cell and papillary renal cell carcinoma. Morrissey, C., Martinez, A., Zatyka, M., Agathanggelou, A., Honorio, S., Astuti, D., Morgan, N.V., Moch, H., Richards, F.M., Kishida, T., Yao, M., Schraml, P., Latif, F., Maher, E.R. Cancer Res. (2001) [Pubmed]
  19. The role of adenovirus E4orf4 protein in viral replication and cell killing. Branton, P.E., Roopchand, D.E. Oncogene (2001) [Pubmed]
  20. Effects of adenovirus-mediated p16INK4A expression on cell cycle arrest are determined by endogenous p16 and Rb status in human cancer cells. Craig, C., Kim, M., Ohri, E., Wersto, R., Katayose, D., Li, Z., Choi, Y.H., Mudahar, B., Srivastava, S., Seth, P., Cowan, K. Oncogene (1998) [Pubmed]
  21. Use of von Willebrand factor promoter to transduce suicidal gene to human endothelial cells, HUVEC. Ozaki, K., Yoshida, T., Ide, H., Saito, I., Ikeda, Y., Sugimura, T., Terada, M. Hum. Gene Ther. (1996) [Pubmed]
  22. Elimination of CD4(+) T cells enhances anti-tumor effect of locally secreted interleukin-12 on B16 mouse melanoma and induces vitiligo-like coat color alteration. Nagai, H., Hara, I., Horikawa, T., Oka, M., Kamidono, S., Ichihashi, M. J. Invest. Dermatol. (2000) [Pubmed]
  23. A candidate for cancer gene therapy: MIP-1 alpha gene transfer to an adenocarcinoma cell line reduced tumorigenicity and induced protective immunity in immunocompetent mice. Nakashima, E., Oya, A., Kubota, Y., Kanada, N., Matsushita, R., Takeda, K., Ichimura, F., Kuno, K., Mukaida, N., Hirose, K., Nakanishi, I., Ujiie, T., Matsushima, K. Pharm. Res. (1996) [Pubmed]
  24. Development and utilization of the rat lymphocyte hprt mutation assay. Aidoo, A., Morris, S.M., Casciano, D.A. Mutat. Res. (1997) [Pubmed]
  25. Potentiation of cytochrome P450/cyclophosphamide-based cancer gene therapy by coexpression of the P450 reductase gene. Chen, L., Yu, L.J., Waxman, D.J. Cancer Res. (1997) [Pubmed]
  26. Superiority of yeast over bacterial cytosine deaminase for enzyme/prodrug gene therapy in colon cancer xenografts. Kievit, E., Bershad, E., Ng, E., Sethna, P., Dev, I., Lawrence, T.S., Rehemtulla, A. Cancer Res. (1999) [Pubmed]
  27. Yeast cytosine deaminase improves radiosensitization and bystander effect by 5-fluorocytosine of human colorectal cancer xenografts. Kievit, E., Nyati, M.K., Ng, E., Stegman, L.D., Parsels, J., Ross, B.D., Rehemtulla, A., Lawrence, T.S. Cancer Res. (2000) [Pubmed]
  28. Generation of Escherichia coli nitroreductase mutants conferring improved cell sensitization to the prodrug CB1954. Grove, J.I., Lovering, A.L., Guise, C., Race, P.R., Wrighton, C.J., White, S.A., Hyde, E.I., Searle, P.F. Cancer Res. (2003) [Pubmed]
  29. Methioninase cancer gene therapy with selenomethionine as suicide prodrug substrate. Miki, K., Xu, M., Gupta, A., Ba, Y., Tan, Y., Al-Refaie, W., Bouvet, M., Makuuchi, M., Moossa, A.R., Hoffman, R.M. Cancer Res. (2001) [Pubmed]
  30. Angiogenic inhibition mediated by a DNAzyme that targets vascular endothelial growth factor receptor 2. Zhang, L., Gasper, W.J., Stass, S.A., Ioffe, O.B., Davis, M.A., Mixson, A.J. Cancer Res. (2002) [Pubmed]
  31. The retinoblastoma interacting zinc finger gene RIZ produces a PR domain-lacking product through an internal promoter. Liu, L., Shao, G., Steele-Perkins, G., Huang, S. J. Biol. Chem. (1997) [Pubmed]
  32. Multiple endocrine neoplasia type 1: clinical and genetic features of the hereditary endocrine neoplasias. Marx, S.J., Agarwal, S.K., Kester, M.B., Heppner, C., Kim, Y.S., Skarulis, M.C., James, L.A., Goldsmith, P.K., Saggar, S.K., Park, S.Y., Spiegel, A.M., Burns, A.L., Debelenko, L.V., Zhuang, Z., Lubensky, I.A., Liotta, L.A., Emmert-Buck, M.R., Guru, S.C., Manickam, P., Crabtree, J., Erdos, M.R., Collins, F.S., Chandrasekharappa, S.C. Recent Prog. Horm. Res. (1999) [Pubmed]
  33. Patterns of loss of heterozygosity at loci from chromosome arm 13q suggests a possible involvement of BRCA2 in sporadic breast tumors. Kerangueven, F., Allione, F., Noguchi, T., Adélaïde, J., Sobol, H., Jacquemier, J., Birnbaum, D. Genes Chromosomes Cancer (1995) [Pubmed]
  34. Cancer-specific loss of beta-defensin 1 in renal and prostatic carcinomas. Donald, C.D., Sun, C.Q., Lim, S.D., Macoska, J., Cohen, C., Amin, M.B., Young, A.N., Ganz, T.A., Marshall, F.F., Petros, J.A. Lab. Invest. (2003) [Pubmed]
  35. Adenovirus-mediated transfer of the thyroid sodium/iodide symporter gene into tumors for a targeted radiotherapy. Boland, A., Ricard, M., Opolon, P., Bidart, J.M., Yeh, P., Filetti, S., Schlumberger, M., Perricaudet, M. Cancer Res. (2000) [Pubmed]
  36. Granulocyte-macrophage colony-stimulating factor and interleukin-2 fusion cDNA for cancer gene immunotherapy. Stagg, J., Wu, J.H., Bouganim, N., Galipeau, J. Cancer Res. (2004) [Pubmed]
  37. Comparative genomic hybridization on mouse cDNA microarrays and its application to a murine lymphoma model. Sander, S., Bullinger, L., Karlsson, A., Giuriato, S., Hernandez-Boussard, T., Felsher, D.W., Pollack, J.R. Oncogene (2005) [Pubmed]
  38. The therapeutic efficacy of adenoviral vectors for cancer gene therapy is limited by a low level of primary adenovirus receptors on tumour cells. Kim, M., Zinn, K.R., Barnett, B.G., Sumerel, L.A., Krasnykh, V., Curiel, D.T., Douglas, J.T. Eur. J. Cancer (2002) [Pubmed]
  39. Activation of host antitumoral responses by cationic lipid/DNA complexes. Bramson, J.L., Bodner, C.A., Graham, R.W. Cancer Gene Ther. (2000) [Pubmed]
WikiGenes - Universities