The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The succinate mechanism of insulin release.

Nutrient secretagogues can increase the production of succinyl-CoA in rat pancreatic islets. When succinate esters are the secretagogue, succinyl-CoA can be generated via the succinate thiokinase reaction. Other secretagogues can increase production of succinyl-CoA secondary to increasing alpha-ketoglutarate production by glutamate dehydrogenase or mitochondrial aspartate aminotransferase followed by the alpha-ketoglutarate dehydrogenase reaction. Although secretagogues can increase the production of succinyl-CoA, they do not increase the level of this metabolite until after they decrease the level of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). This suggests that the generated succinyl-CoA initially reacts with acetoacetate to yield acetoacetyl-CoA plus succinate in the succinyl-CoA-acetoacetate transferase reaction. This would be followed by acetoacetyl-CoA reacting with acetyl-CoA to generate HMG-CoA in the HMG-CoA synthetase reaction. HMG-CoA will then be reduced by NADPH to mevalonate in the HMG-CoA reductase reaction and/or cleaved to acetoacetate plus acetyl-CoA by HMG cleavage enzyme. Succinate derived from either exogenous succinate esters or generated by succinyl-CoA-acetoacetate transferase is metabolized to malate followed by the malic enzyme reaction. Increased production of NADPH by the latter reaction then increases reduction of HMG-CoA and accounts for the decrease in the level of HMG-CoA produced by secretagogues. Pyruvate carboxylation catalyzed by pyruvate carboxylase will supply oxaloacetate to mitochondrial aspartate aminotransferase. This would enable this aminotransferase to supply alpha-ketoglutarate to the alpha-ketoglutarate dehydrogenase complex and would, in part, account for secretagogues increasing the islet level of succinyl-CoA after they decrease the level of HMG-CoA. Mevalonate could be a trigger of insulin release as a result of its ability to alter membrane proteins and/or cytosolic Ca(2+). This is consistent with the fact that insulin secretagogues decrease the level of the mevalonate precursor HMG-CoA. In addition, inhibitors of HMG-CoA reductase interfere with insulin release and this inhibition can be reversed by mevalonate.[1]

References

  1. The succinate mechanism of insulin release. Fahien, L.A., MacDonald, M.J. Diabetes (2002) [Pubmed]
 
WikiGenes - Universities