The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

CHEBI:15345     [(2R,3S,4R,5R)-5-(6- aminopurin-9-yl)-4...

Synonyms: AC1Q5CFV, AR-1L3942, AC1L3NJ4, C00332, 1dub, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of acetoacetyl-coenzyme a


High impact information on acetoacetyl-coenzyme a

  • Measurement of the activity of L-3-hydroxyacyl-CoA dehydrogenase in cultured skin fibroblasts with acetoacetyl-CoA substrate showed reduced activity [6].
  • 3-Ketothiolase deficiency (3KTD) stems from a deficiency of mitochondrial acetoacetyl-coenzyme A thiolase (T2) [7].
  • The structures suggest that an active-site glutamic acid (Glu-79) acts as a general base both in the condensation between acetoacetyl-CoA and the acetylated enzyme, and the hydrolytic release of HMG-CoA from the enzyme [1].
  • Reaction kinetics, isotope exchange, and mass spectroscopy suggest surprisingly that HMGS is able to catalyze the "backwards" reaction in solution, where HMG-CoA is cleaved to form acetoacetyl-CoA (AcAc-CoA) and acetate [1].
  • I now report that covalent cross-linking of 125I-labeled [Nle15]gastrin2,17 to the 78-kDa GBP is inhibited by crotonyl-CoA and by acetoacetyl-CoA [8].

Chemical compound and disease context of acetoacetyl-coenzyme a


Biological context of acetoacetyl-coenzyme a


Anatomical context of acetoacetyl-coenzyme a


Associations of acetoacetyl-coenzyme a with other chemical compounds

  • Regulation of early cholesterol biosynthesis in rat liver: effects of sterols, bile acids, lovastatin, and BM 15.766 on 3-hydroxy-3-methylglutaryl coenzyme A synthase and acetoacetyl coenzyme A thiolase activities [21].
  • Upon modification with the mechanism-based inhibitor, 3-chloropropionyl-CoA, or in formation of a stable binary complex with acetoacetyl-CoA, F204L exhibits binding stoichiometries comparable with wild-type enzyme, suggesting substantial retention of active site integrity [22].
  • This microsomal reductase converts acetoacetyl-CoA to beta-hydroxybutyryl-CoA at a rate of 70 nmol/min/mg of protein; the enzyme has a specific requirement for NADH and appears to obtain electrons directly from the reduced pyridine nucleotide without the intervention of cytochrome b5 and its flavoprotein reductase [23].
  • No modified activity of cytosol acetoacetyl coenzyme A (CoA), thiolase, or 3-hydroxy-3-methylglutaryl CoA (HMGCoA) synthase was detectable at the different stages examined [24].
  • Reduction of acetoacetyl-CoA via the low-Km pathway is CoA-dependent, indicating that acetoacetyl-CoA can react with the dimer by two mechanisms: a high-Km pathway analogous to that utilized by model substrates and a low-Km pathway in which substrate and product are transferred between acyl-CoA and acyl-enzyme forms [25].

Gene context of acetoacetyl-coenzyme a


Analytical, diagnostic and therapeutic context of acetoacetyl-coenzyme a


  1. 3-hydroxy-3-methylglutaryl-CoA synthase intermediate complex observed in "real-time". Theisen, M.J., Misra, I., Saadat, D., Campobasso, N., Miziorko, H.M., Harrison, D.H. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  2. Solventogenic enzymes of Clostridium acetobutylicum: catalytic properties, genetic organization, and transcriptional regulation. Dürre, P., Fischer, R.J., Kuhn, A., Lorenz, K., Schreiber, W., Stürzenhofecker, B., Ullmann, S., Winzer, K., Sauer, U. FEMS Microbiol. Rev. (1995) [Pubmed]
  3. Biosynthetic thiolase from zoogloea ramigera. I. Preliminary characterization and analysis of proton transfer reaction. Davis, J.T., Moore, R.N., Imperiali, B., Pratt, A.J., Kobayashi, K., Masamune, S., Sinskey, A.J., Walsh, C.T., Fukui, T., Tomita, K. J. Biol. Chem. (1987) [Pubmed]
  4. Crystal structure of Mycobacterium tuberculosis MenB, a key enzyme in vitamin K2 biosynthesis. Truglio, J.J., Theis, K., Feng, Y., Gajda, R., Machutta, C., Tonge, P.J., Kisker, C. J. Biol. Chem. (2003) [Pubmed]
  5. X-ray crystal structures of HMG-CoA synthase from Enterococcus faecalis and a complex with its second substrate/inhibitor acetoacetyl-CoA. Steussy, C.N., Vartia, A.A., Burgner, J.W., Sutherlin, A., Rodwell, V.W., Stauffacher, C.V. Biochemistry (2005) [Pubmed]
  6. Hyperinsulinism in short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency reveals the importance of beta-oxidation in insulin secretion. Clayton, P.T., Eaton, S., Aynsley-Green, A., Edginton, M., Hussain, K., Krywawych, S., Datta, V., Malingre, H.E., Berger, R., van den Berg, I.E. J. Clin. Invest. (2001) [Pubmed]
  7. Identification of three mutant alleles of the gene for mitochondrial acetoacetyl-coenzyme A thiolase. A complete analysis of two generations of a family with 3-ketothiolase deficiency. Fukao, T., Yamaguchi, S., Orii, T., Schutgens, R.B., Osumi, T., Hashimoto, T. J. Clin. Invest. (1992) [Pubmed]
  8. Antiproliferative gastrin/cholecystokinin receptor antagonists target the 78-kDa gastrin-binding protein. Baldwin, G.S. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  9. Incorporation and distribution of selenium into thiolase from Clostridium kluyveri. Sliwkowski, M.X., Stadtman, T.C. J. Biol. Chem. (1985) [Pubmed]
  10. The NADPH-linked acetoacetyl-CoA reductase from Zoogloea ramigera. Characterization and mechanistic studies of the cloned enzyme over-produced in Escherichia coli. Ploux, O., Masamune, S., Walsh, C.T. Eur. J. Biochem. (1988) [Pubmed]
  11. An NADP-linked acetoacetyl CoA reductase from Zoogloea ramigera. Saito, T., Fukui, T., Ikeda, F., Tanaka, Y., Tomita, K. Arch. Microbiol. (1977) [Pubmed]
  12. ERG10 from Saccharomyces cerevisiae encodes acetoacetyl-CoA thiolase. Hiser, L., Basson, M.E., Rine, J. J. Biol. Chem. (1994) [Pubmed]
  13. The gene encoding Escherichia coli acyl carrier protein lies within a cluster of fatty acid biosynthetic genes. Rawlings, M., Cronan, J.E. J. Biol. Chem. (1992) [Pubmed]
  14. Fine structural analysis of the Zoogloea ramigera phbA-phbB locus encoding beta-ketothiolase and acetoacetyl-CoA reductase: nucleotide sequence of phbB. Peoples, O.P., Sinskey, A.J. Mol. Microbiol. (1989) [Pubmed]
  15. Identification of three novel frameshift mutations (83delAT, 754insCT, and 435 + 1G to A) of mitochondrial acetoacetyl-coenzyme A thiolase gene in two Swiss patients with CRM-negative beta-ketothiolase deficiency. Fukao, T., Song, X.Q., Yamaguchi, S., Kondo, N., Orii, T., Matthieu, J.M., Bachmann, C., Hashimoto, T. Hum. Mutat. (1997) [Pubmed]
  16. Study of an alternate glyoxylate cycle for acetate assimilation by Rhodobacter sphaeroides. Alber, B.E., Spanheimer, R., Ebenau-Jehle, C., Fuchs, G. Mol. Microbiol. (2006) [Pubmed]
  17. A survey of enzymes which generate or use acetoacetyl thioesters in rat liver. Aragón, J.J., Lowenstein, J.M. J. Biol. Chem. (1983) [Pubmed]
  18. Purification and properties of a pig heart thiolase with broad chain length specificity and comparison of thiolases from pig heart and Escherichia coli. Staack, H., Binstock, J.F., Schulz, H. J. Biol. Chem. (1978) [Pubmed]
  19. Activity of acetoacetyl--CoA thiolase and regulation of ketone body metabolism in the brain of the developing chick. Nehlig, A., Lehr, P.R. Brain Res. (1982) [Pubmed]
  20. Significance of catalase in peroxisomal fatty acyl-CoA beta-oxidation: NADH oxidation by acetoacetyl-CoA and H2O2. Hashimoto, F., Hayashi, H. J. Biochem. (1990) [Pubmed]
  21. Regulation of early cholesterol biosynthesis in rat liver: effects of sterols, bile acids, lovastatin, and BM 15.766 on 3-hydroxy-3-methylglutaryl coenzyme A synthase and acetoacetyl coenzyme A thiolase activities. Honda, A., Salen, G., Nguyen, L.B., Xu, G., Tint, G.S., Batta, A.K., Shefer, S. Hepatology (1998) [Pubmed]
  22. The influence of conserved aromatic residues in 3-hydroxy-3-methylglutaryl-CoA synthase. Misra, I., Wang, C.Z., Miziorko, H.M. J. Biol. Chem. (2003) [Pubmed]
  23. Rat hepatic microsomal acetoacetyl-CoA reductase. A beta-ketoacyl-CoA reductase distinct from the long chain beta-ketoacyl-CoA reductase component of the microsomal fatty acid chain elongation system. Prasad, M.R., Cook, L., Vieth, R., Cinti, D.L. J. Biol. Chem. (1984) [Pubmed]
  24. Cholesterogenesis and related enzymes in isolated rat hepatocytes during pre- and postnatal life. Leoni, S., Spagnuolo, S., Conti-Devirgiliis, L., Dini, L., Mangiantini, M.T., Trentalance, A. J. Cell. Physiol. (1984) [Pubmed]
  25. Characterization of fatty acid synthase monomers restrained from reassociating by immobilization to a solid support. Petithory, J.R., Smith, S. Biochem. J. (1993) [Pubmed]
  26. Role of ERAB/L-3-hydroxyacyl-coenzyme A dehydrogenase type II activity in Abeta-induced cytotoxicity. Yan, S.D., Shi, Y., Zhu, A., Fu, J., Zhu, H., Zhu, Y., Gibson, L., Stern, E., Collison, K., Al-Mohanna, F., Ogawa, S., Roher, A., Clarke, S.G., Stern, D.M. J. Biol. Chem. (1999) [Pubmed]
  27. Succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency: two pathogenic mutations, V133E and C456F, in Japanese siblings. Song, X.Q., Fukao, T., Watanabe, H., Shintaku, H., Hirayama, K., Kassovska-Bratinova, S., Kondo, N., Mitchell, G.A. Hum. Mutat. (1998) [Pubmed]
  28. Isolation and characterization of yeast mutants blocked in mevalonic acid formation. Servouse, M., Mons, N., Baillargeat, J.L., Karst, F. Biochem. Biophys. Res. Commun. (1984) [Pubmed]
  29. AniA regulates reserve polymer accumulation and global protein expression in Rhizobium etli. Encarnación, S., del Carmen Vargas, M., Dunn, M.F., Dávalos, A., Mendoza, G., Mora, Y., Mora, J. J. Bacteriol. (2002) [Pubmed]
  30. Identification of an acetoacetyl coenzyme A synthetase-dependent pathway for utilization of L-(+)-3-hydroxybutyrate in Sinorhizobium meliloti. Aneja, P., Dziak, R., Cai, G.Q., Charles, T.C. J. Bacteriol. (2002) [Pubmed]
  31. Molecular cloning and sequence of the complementary DNA encoding human mitochondrial acetoacetyl-coenzyme A thiolase and study of the variant enzymes in cultured fibroblasts from patients with 3-ketothiolase deficiency. Fukao, T., Yamaguchi, S., Kano, M., Orii, T., Fujiki, Y., Osumi, T., Hashimoto, T. J. Clin. Invest. (1990) [Pubmed]
  32. Regulation of acetoacetyl-CoA in isolated perfused rat hearts. Menahan, L.A., Hron, W.T. Eur. J. Biochem. (1981) [Pubmed]
  33. Properties of mitochondria and peroxisomal enoyl-CoA hydratases from rat liver. Furuta, S., Miyazawa, S., Osumi, T., Hashimoto, T., Ui, N. J. Biochem. (1980) [Pubmed]
  34. Chromosome mapping of the human mitochondrial acetoacetyl-coenzyme A thiolase gene to 11q22.3----q23.1 by fluorescence in situ hybridization. Masuno, M., Kano, M., Fukao, T., Yamaguchi, S., Osumi, T., Hashimoto, T., Takahashi, E., Hori, T., Orii, T. Cytogenet. Cell Genet. (1992) [Pubmed]
WikiGenes - Universities