The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

The superoxide-generating NADPH oxidase: structural aspects and activation mechanism.

Flavocytochrome b558 is the catalytic core of the respiratory-burst oxidase, an enzyme complex that catalyzes the NADPH-dependent reduction of O2 into the superoxide anion O2 in phagocytic cells. Flavocytochrome b558 is anchored in the plasma membrane. It is a heterodimer that consists of a large glycoprotein gp91phox (phox forphagocyte oxidase) (beta subunit) and a small protein p22phox (alpha subunit). The other components of the respiratory-burst oxidase are water-soluble proteins of cytosolic origin, namely p67phox, p47phox, p40phox and Rac. Upon cell stimulation, they assemble with the membrane-bound flavocytochrome b558 which becomes activated and generates O2-. A defect in any of the genes encoding gp91phox, p22phox, p67phox or p47phox results in chronic granulomatous disease, a genetic disorder characterized by severe and recurrent infections, illustrating the role of O2- and the derived metabolites H2O2 and HOCl in host defense against invading microorganisms. The electron carriers, FAD and hemes b, and the binding site for NADPH are confined to the gp91phox subunit of flavocytochrome b558. The p22phox subunit serves as a docking site for the cytoso lic phox proteins. This review provides an overview of current knowledge on the structural organization of the O2(-)-generating flavocytochrome b558, its kinetics, its mechanism of activation and the regulation of its biosynthesis. Homologues of gp91phox, called Nox and Duox, are present in a large variety of non-phagocytic cells. They exhibit modest O2(-)-generating oxidase activity, and some act as proton channels. Their role in various aspects of signal transduction is currently under investigation and is briefly discussed.[1]


WikiGenes - Universities