The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Molecular evolution by change of function. Alkaloid-specific homospermidine synthase retained all properties of deoxyhypusine synthase except binding the eIF5A precursor protein.

Deoxyhypusine synthase participates in the post-translational activation of the eukaryotic initiation factor 5A (eIF5A). The enzyme transfers the aminobutyl moiety of spermidine to a specific lysine residue in the eIF5A precursor protein, i.e. eIF5A(lys). Homospermidine synthase catalyzes an analogous reaction but uses putrescine instead of eIF5A(lys) as substrate yielding the rare polyamine homospermidine as product. Homospermidine is an essential precursor in the biosynthesis of pyrrolizidine alkaloids, an important class of plant defense compounds against herbivores. Sequence comparisons of the two enzymes indicate an evolutionary origin of homospermidine synthase from ubiquitous deoxyhypusine synthase. The two recombinant enzymes from Senecio vernalis were purified, and their properties were compared. Protein-protein binding and kinetic substrate competition studies confirmed that homospermidine synthase, in comparison to deoxyhypusine synthase, lost the ability to bind the eIF5A(lys) to its surface. The two enzymes show the same unique substrate specificities, catalyze the aminobutylation of putrescine with the same specific activities, and exhibit almost identical Michaelis kinetics. In conclusion, homospermidine synthase behaves like a deoxyhypusine synthase that lost its major function (aminobutylation of eIF5A precursor protein) but retained unaltered its side activity (aminobutylation of putrescine). It is suggested as having evolved from deoxyhypusine synthase by gene duplication and being recruited for a new function.[1]


WikiGenes - Universities