The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

EIF5A  -  eukaryotic translation initiation factor 5A

Homo sapiens

Synonyms: EIF-5A, EIF5A1, Eukaryotic initiation factor 5A isoform 1, Eukaryotic translation initiation factor 5A-1, MGC104255, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of EIF5A


High impact information on EIF5A


Chemical compound and disease context of EIF5A


Biological context of EIF5A


Anatomical context of EIF5A


Associations of EIF5A with chemical compounds

  • The export signal in eIF-5A appears to be complex and to involve the hypusine modification that is unique to eIF-5A [15].
  • Thus it was found that [14C]putrescine can replace eIF5A precursor protein as an acceptor of the 4-aminobutyl moiety of spermidine to form radiolabeled homospermidine [22].
  • The results obtained thus far define the minimum domain of the eIF-5A precursor protein required for enzymatic deoxyhypusine synthesis as Phe30-Asp80, which corresponds to a region of high amino acid conservation in this protein throughout the eukaryotic kingdom [1].
  • The biosynthesis of hypusine occurs posttranslationally in only this protein by modification of a single lysine residue (Lys50 in the human eIF-5A precursor) [1].
  • The Km value for putrescine (1.12 mM) as a 4-aminobutyl acceptor, however, is much higher than that for eIF5A precursor (1.5 microM) [22].

Physical interactions of EIF5A


Enzymatic interactions of EIF5A


Regulatory relationships of EIF5A

  • These results suggest that loss of the active form of eIF-5A is an important factor in the irreversible process of heat stress-induced death of MIA PaCa-2 cells [5].

Other interactions of EIF5A

  • Overexpression of eIF5A led to a p53-dependent apoptosis or sensitized cells to induction of apoptosis by chemotherapeutic agents [16].
  • Our results demonstrated that eIF5A and syntenin could engage in a specific interaction both in vitro and in vivo and functioned collaboratively to regulate p53 activity [16].
  • This result supports the hypothesis that the synthesis of a subset of proteins important for the S-phase progression of CHO-K1 cells might be dependent upon hypusinated eIF-5A [18].
  • Here we show that the ribosomal protein L5, which is the central protein component of the 5S rRNA export system, is a cellular interaction partner of eIF-5A [4].
  • We are able to show that eIF-5A interacts with the general nuclear export receptor, CRM1 [21].

Analytical, diagnostic and therapeutic context of EIF5A


  1. Structural features of the eIF-5A precursor required for posttranslational synthesis of deoxyhypusine. Joe, Y.A., Park, M.H. J. Biol. Chem. (1994) [Pubmed]
  2. The eukaryotic cofactor for the human immunodeficiency virus type 1 (HIV-1) rev protein, eIF-5A, maps to chromosome 17p12-p13: three eIF-5A pseudogenes map to 10q23.3, 17q25, and 19q13.2. Steinkasserer, A., Jones, T., Sheer, D., Koettnitz, K., Hauber, J., Bevec, D. Genomics (1995) [Pubmed]
  3. Human eIF5A2 on chromosome 3q25-q27 is a phylogenetically conserved vertebrate variant of eukaryotic translation initiation factor 5A with tissue-specific expression. Jenkins, Z.A., Hååg, P.G., Johansson, H.E. Genomics (2001) [Pubmed]
  4. Interaction of the HIV-1 rev cofactor eukaryotic initiation factor 5A with ribosomal protein L5. Schatz, O., Oft, M., Dascher, C., Schebesta, M., Rosorius, O., Jaksche, H., Dobrovnik, M., Bevec, D., Hauber, J. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  5. Heat stress-induced loss of eukaryotic initiation factor 5A (eIF-5A) in a human pancreatic cancer cell line, MIA PaCa-2, analyzed by two-dimensional gel electrophoresis. Takeuchi, K., Nakamura, K., Fujimoto, M., Kaino, S., Kondoh, S., Okita, K. Electrophoresis (2002) [Pubmed]
  6. Inhibition of HIV-1 replication in lymphocytes by mutants of the Rev cofactor eIF-5A. Bevec, D., Jaksche, H., Oft, M., Wöhl, T., Himmelspach, M., Pacher, A., Schebesta, M., Koettnitz, K., Dobrovnik, M., Csonga, R., Lottspeich, F., Hauber, J. Science (1996) [Pubmed]
  7. Inhibition of CD83 cell surface expression during dendritic cell maturation by interference with nuclear export of CD83 mRNA. Kruse, M., Rosorius, O., Krätzer, F., Bevec, D., Kuhnt, C., Steinkasserer, A., Schuler, G., Hauber, J. J. Exp. Med. (2000) [Pubmed]
  8. Specific inhibition of eIF-5A and collagen hydroxylation by a single agent. Antiproliferative and fibrosuppressive effects on smooth muscle cells from human coronary arteries. McCaffrey, T.A., Pomerantz, K.B., Sanborn, T.A., Spokojny, A.M., Du, B., Park, M.H., Folk, J.E., Lamberg, A., Kivirikko, K.I., Falcone, D.J. J. Clin. Invest. (1995) [Pubmed]
  9. Is hypusine essential for eukaryotic cell proliferation? Park, M.H., Wolff, E.C., Folk, J.E. Trends Biochem. Sci. (1993) [Pubmed]
  10. Cofactor requirements for nuclear export of Rev response element (RRE)- and constitutive transport element (CTE)-containing retroviral RNAs. An unexpected role for actin. Hofmann, W., Reichart, B., Ewald, A., Müller, E., Schmitt, I., Stauber, R.H., Lottspeich, F., Jockusch, B.M., Scheer, U., Hauber, J., Dabauvalle, M.C. J. Cell Biol. (2001) [Pubmed]
  11. Proteomic analysis of eIF-5A in lung adenocarcinomas. Chen, G., Gharib, T.G., Thomas, D.G., Huang, C.C., Misek, D.E., Kuick, R.D., Giordano, T.J., Iannettoni, M.D., Orringer, M.B., Hanash, S.M., Beer, D.G. Proteomics (2003) [Pubmed]
  12. Comparison of the activities of variant forms of eIF-4D. The requirement for hypusine or deoxyhypusine. Park, M.H., Wolff, E.C., Smit-McBride, Z., Hershey, J.W., Folk, J.E. J. Biol. Chem. (1991) [Pubmed]
  13. Protein synthesis initiation factor eIF-4D. Functional comparison of native and unhypusinated forms of the protein. Smit-McBride, Z., Schnier, J., Kaufman, R.J., Hershey, J.W. J. Biol. Chem. (1989) [Pubmed]
  14. The polypeptide chain of eukaryotic initiation factor 5A occurs in two distinct conformations in the absence of the hypusine modification. João, H.C., Csonga, R., Klier, H., Koettnitz, K., Auer, M., Eder, J. Biochemistry (1995) [Pubmed]
  15. Exportin 4: a mediator of a novel nuclear export pathway in higher eukaryotes. Lipowsky, G., Bischoff, F.R., Schwarzmaier, P., Kraft, R., Kostka, S., Hartmann, E., Kutay, U., Görlich, D. EMBO J. (2000) [Pubmed]
  16. A novel eIF5A complex functions as a regulator of p53 and p53-dependent apoptosis. Li, A.L., Li, H.Y., Jin, B.F., Ye, Q.N., Zhou, T., Yu, X.D., Pan, X., Man, J.H., He, K., Yu, M., Hu, M.R., Wang, J., Yang, S.C., Shen, B.F., Zhang, X.M. J. Biol. Chem. (2004) [Pubmed]
  17. Deoxyhypusine synthase activity is essential for cell viability in the yeast Saccharomyces cerevisiae. Park, M.H., Joe, Y.A., Kang, K.R. J. Biol. Chem. (1998) [Pubmed]
  18. Effects of N1-guanyl-1,7-diaminoheptane, an inhibitor of deoxyhypusine synthase, on the growth of tumorigenic cell lines in culture. Shi, X.P., Yin, K.C., Ahern, J., Davis, L.J., Stern, A.M., Waxman, L. Biochim. Biophys. Acta (1996) [Pubmed]
  19. Induced gene expression of the hypusine-containing protein eukaryotic initiation factor 5A in activated human T lymphocytes. Bevec, D., Klier, H., Holter, W., Tschachler, E., Valent, P., Lottspeich, F., Baumruker, T., Hauber, J. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  20. Eukaryotic initiation factor 4D. Purification from human red blood cells and the sequence of amino acids around its single hypusine residue. Park, M.H., Liu, T.Y., Neece, S.H., Swiggard, W.J. J. Biol. Chem. (1986) [Pubmed]
  21. Nuclear pore localization and nucleocytoplasmic transport of eIF-5A: evidence for direct interaction with the export receptor CRM1. Rosorius, O., Reichart, B., Krätzer, F., Heger, P., Dabauvalle, M.C., Hauber, J. J. Cell. Sci. (1999) [Pubmed]
  22. Reversal of the deoxyhypusine synthesis reaction. Generation of spermidine or homospermidine from deoxyhypusine by deoxyhypusine synthase. Park, J.H., Wolff, E.C., Folk, J.E., Park, M.H. J. Biol. Chem. (2003) [Pubmed]
  23. Molecular evolution by change of function. Alkaloid-specific homospermidine synthase retained all properties of deoxyhypusine synthase except binding the eIF5A precursor protein. Ober, D., Harms, R., Witte, L., Hartmann, T. J. Biol. Chem. (2003) [Pubmed]
  24. Specificity of the deoxyhypusine hydroxylase-eukaryotic translation initiation factor (eIF5A) interaction: identification of amino acid residues of the enzyme required for binding of its substrate, deoxyhypusine-containing eIF5A. Kang, K.R., Kim, Y.S., Wolff, E.C., Park, M.H. J. Biol. Chem. (2007) [Pubmed]
  25. Enzyme-substrate intermediate formation at lysine 329 of human deoxyhypusine synthase. Wolff, E.C., Folk, J.E., Park, M.H. J. Biol. Chem. (1997) [Pubmed]
  26. Complex formation between deoxyhypusine synthase and its protein substrate, the eukaryotic translation initiation factor 5A (eIF5A) precursor. Lee, Y.B., Joe, Y.A., Wolff, E.C., Dimitriadis, E.K., Park, M.H. Biochem. J. (1999) [Pubmed]
  27. Eukaryotic initiation factor 5A is a cellular target of the human immunodeficiency virus type 1 Rev activation domain mediating trans-activation. Ruhl, M., Himmelspach, M., Bahr, G.M., Hammerschmid, F., Jaksche, H., Wolff, B., Aschauer, H., Farrington, G.K., Probst, H., Bevec, D. J. Cell Biol. (1993) [Pubmed]
  28. Isolation and structural characterization of different isoforms of the hypusine-containing protein eIF-5A from HeLa cells. Klier, H., Csonga, R., Joäo, H.C., Eckerskorn, C., Auer, M., Lottspeich, F., Eder, J. Biochemistry (1995) [Pubmed]
  29. Identification of a new member of the human eIF-5A gene family. Koettnitz, K., Wöhl, T., Kappel, B., Lottspeich, F., Hauber, J., Bevec, D. Gene (1995) [Pubmed]
WikiGenes - Universities