Evidence for the differential effects of nucleocapsid protein on strand transfer in various regions of the HIV genome.
An in vitro strand transfer assay that mimicked recombinational events occurring during reverse transcription in HIV-1 was used to assess the role of nucleocapsid protein (NC) in strand transfer. Strand transfer in highly structured nucleic acid species from the U3 3' long terminal repeats, gag-pol frameshift region, and Rev response element were strongly enhanced by NC. In contrast, weakly structured templates from the env and pol-vif regions transferred well without NC and showed lower enhancement. The lack of strong polymerase pause sites in the latter regions demonstrated that non-pause driven mechanisms could also promote transfer. Assays conducted using NC zinc finger mutants supported a differential role for the two fingers in strand transfer with finger 1 (N-terminal) being more important on highly structured RNAs. Overall this report suggests a role for structural intricacies of RNA templates in determining the extent of influence of NC on recombination and illustrates that strand transfer may occur by several different mechanisms depending on the structural nature of the RNA.[1]References
- Evidence for the differential effects of nucleocapsid protein on strand transfer in various regions of the HIV genome. Derebail, S.S., Heath, M.J., DeStefano, J.J. J. Biol. Chem. (2003) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg