The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

vif  -  p23

Human immunodeficiency virus 1

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of vif

Recombinant SIVcpz-gab/HIV-1 group M isolate

A highly divergent HIV-1 isolate, designated YBF 30, was obtained in 1995 from a 40-year-old Cameroonian woman with AIDS. Depending on the genes studied, phylogenetic analysis showed that YBF30 branched either with SIVcpz-gab or between SIVcpz-gab and HIV-1 group M. The structural genes and tat, vpr, and nef of YBF30 are approximately equidistant from those of HIV-1 group M and SIVcpz-gab. In contrast, vif and rev are closer to HIV-1 group M, and vpu is highly divergent [4].


High impact information on vif


Chemical compound and disease context of vif


Biological context of vif

  • However, elimination of the vif and vpr accessory genes together, but not individually, renders the virus incapable of causing cell death and G(2) cell cycle blockade [13].
  • The entire vpu gene as well as the 5' half of the vif gene were codon optimized and the resulting open reading frames (ORFs) (vphu and hvif, respectively) were cloned in autonomous expression vectors under the transcriptional control of the CMV promoter [14].
  • DNA sequence analysis of PCR-amplified products revealed a total of 5 nucleotide changes in the LTR while vif had 2 consensus amino acid changes [15].
  • The gag, vif, and vpx had no consensus amino acid substitutions, whereas vpr had 1 consensus substitution [15].
  • Single point mutation of M1 within an infectious molecular clone is detrimental for HIV-1 exon 2 recognition without affecting Rev-dependent vif expression [16].

Anatomical context of vif


Associations of vif with chemical compounds

  • In vivo studies demonstrated that Vif is highly phosphorylated on serine and threonine residues [10].
  • For vif sequences, NT-2 contained stop codons and no initiation codons, whereas NT-1 sequences carried a substitution of a highly conserved tyrosine to histidine at position 30 [19].
  • A large number of scanning missense (mostly alanine substitution) and deletion mutations were introduced into the HIV-1HXB3 vif gene, and the resulting proteins were evaluated for the induction of virus infectivity as well as subcellular localization [20].
  • We found a novel GPGGMI motif in the V3 loop, a novel insertion of a proline in the C3 region, and persistent deletion of two amino acids in the vif gene [21].
  • Not surprisingly, on a vif background nascent minus strand DNA can be extensively edited leaving multiple uracil residues [22].

Physical interactions of vif

  • Codon optimization of the HIV-1 vpu and vif genes stabilizes their mRNA and allows for highly efficient Rev-independent expression [14].

Other interactions of vif

  • RESULTS: DNA vaccine construct (pVVN-P) expressing Vif, Vpu and Nef was processed and the fusion protein was cleaved appropriately [23].
  • We constructed an RNase P and tRNase ZL-associated vif and tat sEGS expression vector; which used the RNA-polymerase III dependent U6 promoter, as an expression cassette for EGS [24].
  • The data presented herein show that the HIV-1 primed CD4(+) T cells produced the R5 suppression factor in response to a wide variety of HIV-1 gag, env, pol, nef or vif peptides, depending on the donor of the CD4(+) T cells [25].
  • Interaction of human immunodeficiency virus type 1 Vif with Gag and Gag-Pol precursors: co-encapsidation and interference with viral protease-mediated Gag processing [26].

Analytical, diagnostic and therapeutic context of vif



  1. Molecular biology of the human immunodeficiency virus type 1. Haseltine, W.A. FASEB J. (1991) [Pubmed]
  2. Rev activates expression of the human immunodeficiency virus type 1 vif and vpr gene products. Garrett, E.D., Tiley, L.S., Cullen, B.R. J. Virol. (1991) [Pubmed]
  3. High level expression of human immunodeficiency virus type-1 Vif inhibits viral infectivity by modulating proteolytic processing of the Gag precursor at the p2/nucleocapsid processing site. Akari, H., Fujita, M., Kao, S., Khan, M.A., Shehu-Xhilaga, M., Adachi, A., Strebel, K. J. Biol. Chem. (2004) [Pubmed]
  4. Identification of a new human immunodeficiency virus type 1 distinct from group M and group O. Simon, F., Mauclère, P., Roques, P., Loussert-Ajaka, I., Müller-Trutwin, M.C., Saragosti, S., Georges-Courbot, M.C., Barré-Sinoussi, F., Brun-Vézinet, F. Nat. Med. (1998) [Pubmed]
  5. Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Mariani, R., Chen, D., Schröfelbauer, B., Navarro, F., König, R., Bollman, B., Münk, C., Nymark-McMahon, H., Landau, N.R. Cell (2003) [Pubmed]
  6. Death by deamination: a novel host restriction system for HIV-1. Goff, S.P. Cell (2003) [Pubmed]
  7. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Sheehy, A.M., Gaddis, N.C., Choi, J.D., Malim, M.H. Nature (2002) [Pubmed]
  8. Identification of a host protein essential for assembly of immature HIV-1 capsids. Zimmerman, C., Klein, K.C., Kiser, P.K., Singh, A.R., Firestein, B.L., Riba, S.C., Lingappa, J.R. Nature (2002) [Pubmed]
  9. An endogenous inhibitor of human immunodeficiency virus in human lymphocytes is overcome by the viral Vif protein. Madani, N., Kabat, D. J. Virol. (1998) [Pubmed]
  10. Phosphorylation of Vif and its role in HIV-1 replication. Yang, X., Goncalves, J., Gabuzda, D. J. Biol. Chem. (1996) [Pubmed]
  11. Differential requirement for conserved tryptophans in human immunodeficiency virus type 1 Vif for the selective suppression of APOBEC3G and APOBEC3F. Tian, C., Yu, X., Zhang, W., Wang, T., Xu, R., Yu, X.F. J. Virol. (2006) [Pubmed]
  12. Cytoskeleton association and virion incorporation of the human immunodeficiency virus type 1 Vif protein. Karczewski, M.K., Strebel, K. J. Virol. (1996) [Pubmed]
  13. The Vif and Vpr accessory proteins independently cause HIV-1-induced T cell cytopathicity and cell cycle arrest. Sakai, K., Dimas, J., Lenardo, M.J. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  14. Codon optimization of the HIV-1 vpu and vif genes stabilizes their mRNA and allows for highly efficient Rev-independent expression. Nguyen, K.L., llano, M., Akari, H., Miyagi, E., Poeschla, E.M., Strebel, K., Bour, S. Virology (2004) [Pubmed]
  15. A cell-free stock of simian-human immunodeficiency virus that causes AIDS in pig-tailed macaques has a limited number of amino acid substitutions in both SIVmac and HIV-1 regions of the genome and has offered cytotropism. Stephens, E.B., Mukherjee, S., Sahni, M., Zhuge, W., Raghavan, R., Singh, D.K., Leung, K., Atkinson, B., Li, Z., Joag, S.V., Liu, Z.Q., Narayan, O. Virology (1997) [Pubmed]
  16. The strength of the HIV-1 3' splice sites affects Rev function. Kammler, S., Otte, M., Hauber, I., Kjems, J., Hauber, J., Schaal, H. Retrovirology (2006) [Pubmed]
  17. Essential role of vif in establishing productive HIV-1 infection in peripheral blood T lymphocytes and monocyte/macrophages. Gabuzda, D.H., Li, H., Lawrence, K., Vasir, B.S., Crawford, K., Langhoff, E. J. Acquir. Immune Defic. Syndr. (1994) [Pubmed]
  18. The Vif and Gag proteins of human immunodeficiency virus type 1 colocalize in infected human T cells. Simon, J.H., Fouchier, R.A., Southerling, T.E., Guerra, C.B., Grant, C.K., Malim, M.H. J. Virol. (1997) [Pubmed]
  19. Low conservation of functional domains of HIV type 1 vif and vpr genes in infected mothers correlates with lack of vertical transmission. Yedavalli, V.R., Ahmad, N. AIDS Res. Hum. Retroviruses (2001) [Pubmed]
  20. Mutational analysis of the human immunodeficiency virus type 1 Vif protein. Simon, J.H., Sheehy, A.M., Carpenter, E.A., Fouchier, R.A., Malim, M.H. J. Virol. (1999) [Pubmed]
  21. Full sequence of HIV type 1 Korean subtype B in an AIDS case with atypical seroconversion: TAAAA at TATA box. Cho, Y.K., Sung, H., Bae, I.G., Oh, H.B., Kim, N.J., Woo, J.H., Kim, Y.B. AIDS Res. Hum. Retroviruses (2005) [Pubmed]
  22. Twin gradients in APOBEC3 edited HIV-1 DNA reflect the dynamics of lentiviral replication. Susp??ne, R., Rusniok, C., Vartanian, J.P., Wain-Hobson, S. Nucleic Acids Res. (2006) [Pubmed]
  23. Immunogenicity of a novel DNA vaccine cassette expressing multiple human immunodeficiency virus (HIV-1) accessory genes. Ayyavoo, V., Kudchodkar, S., Ramanathan, M.P., Le, P., Muthumani, K., Megalai, N.M., Dentchev, T., Santiago-Barrios, L., Mrinalini, C., Weiner, D.B. AIDS (2000) [Pubmed]
  24. Suppression of HIV-1 replication by a combination of endonucleolytic ribozymes (RNnase p and tRNnase ZL). Ikeda, M., Habu, Y., Miyano-Kurosaki, N., Takaku, H. Nucleosides Nucleotides Nucleic Acids (2006) [Pubmed]
  25. Identification of HIV-1 epitopes that induce the synthesis of a R5 HIV-1 suppression factor by human CD4+ T cells isolated from HIV-1 immunized hu-PBL SCID mice. Yoshida, A., Tanaka, R., Kodama, A., Yamamoto, N., Ansari, A.A., Tanaka, Y. Clin. Dev. Immunol. (2005) [Pubmed]
  26. Interaction of human immunodeficiency virus type 1 Vif with Gag and Gag-Pol precursors: co-encapsidation and interference with viral protease-mediated Gag processing. Bardy, M., Gay, B., Pébernard, S., Chazal, N., Courcoul, M., Vigne, R., Decroly, E., Boulanger, P. J. Gen. Virol. (2001) [Pubmed]
  27. Cell-free HIV-1Zr6 vif mutants are defective in binding to peripheral blood mononuclear cells and in internalization. Nagashunmugam, T., Friedman, H.M. DNA Cell Biol. (1996) [Pubmed]
  28. Ubiquitination of APOBEC3 proteins by the Vif-Cullin5-ElonginB-ElonginC complex. Shirakawa, K., Takaori-Kondo, A., Kobayashi, M., Tomonaga, M., Izumi, T., Fukunaga, K., Sasada, A., Abudu, A., Miyauchi, Y., Akari, H., Iwai, K., Uchiyama, T. Virology (2006) [Pubmed]
  29. Conservation of an intact human immunodeficiency virus type 1 vif gene in vitro and in vivo. Sova, P., van Ranst, M., Gupta, P., Balachandran, R., Chao, W., Itescu, S., McKinley, G., Volsky, D.J. J. Virol. (1995) [Pubmed]
WikiGenes - Universities