The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The ethanol oxidation system and its regulation in Pseudomonas aeruginosa.

Pseudomonas aeruginosa ATCC 17933, when growing on ethanol, uses a pyrroloquinoline quinone (PQQ)-dependent ethanol oxidation system. The genes coding for the ethanol oxidizing enzyme, a quinoprotein ethanol dehydrogenase (QEDH), cytochrome c(550), which is an essential component of the electron transport chain and accepts the electrons from QEDH, and an NAD-dependent acetaldehyde dehydrogenase form the exaABC gene cluster. Downstream of the exaBC genes the pqqABCDE gene cluster is found, which codes for proteins essential for biosynthesis of the cofactor PQQ. Also essential for growth on ethanol are an acetyl-CoA synthetase encoded by the acsA gene and a malate:quinone oxidoreductase encoded by the mqo gene. The X-ray structure of the soluble QEDH from P. aeruginosa was solved. It is a homodimeric enzyme and, aside from differences in some loops, the folding of QEDH is very similar to the large subunit of the soluble methanol dehydrogenase of methylotrophs, and the PQQ domain of the quinohemoprotein alcohol dehydrogenase from Comamonas testosteroni and P. fluorescens. Transcription from the QEDH (exaA) promoter is regulated by a two component system: a histidine sensor kinase (ExaD), which is presumably located in the cytoplasm, and a response regulator (ExaE). The phenotypic characterization and transcription studies with six regulatory mutants indicate that seven different genes in an hierarchical organization may be involved in regulating the transcription of the ethanol oxidation system and components of acetate metabolism in P. aeruginosa.[1]

References

 
WikiGenes - Universities