Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258.
The arsenic resistance operon of Staphylococcus aureus plasmid pI258 consists of three genes, arsR (encoding the repressor regulatory protein), arsB (the determinant of the membrane efflux protein that confers resistance by pumping arsenic from the cells), and arsC (the small gene whose protein product is required for arsenate resistance only, not for arsenite resistance). ArsC has now been shown to be an arsenate reductase, converting intracellular arsenate [As(V)] to arsenite [As(III)], which is then exported from the cells by an energy-dependent efflux process. The arsenate reductase activity was found in the soluble cytoplasmic fraction in Escherichia coli (and not associated with the periplasmic fraction or the sedimentable cell envelope). Purified ArsC protein coupled in vitro with thioredoxin plus dithiothreitol (but not 2-mercaptoethanol or reduced glutathione) to reduce arsenate to arsenite.[1]References
- Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258. Ji, G., Silver, S. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg