The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Investigation of the interaction of a putative allosteric modulator, N-(2,3-diphenyl-1,2,4-thiadiazole-5-(2H)-ylidene) methanamine hydrobromide (SCH-202676), with M1 muscarinic acetylcholine receptors.

The interaction between a novel G protein-coupled receptor modulator, N-(2,3-diphenyl-1,2,4-thiadiazole-5-(2H)-ylidene) methanamine hydrobromide (SCH-202676), and the M(1) muscarinic acetylcholine receptor (mAChR) was investigated. In contrast to the prototypical mAChR allosteric modulator, heptane 1,7-bis-(dimethyl-3'-phthalimidopropyl)-ammonium bromide (C(7)/3-phth), SCH-202676 had no effect on the dissociation kinetics of [(3)H]N-methylscopolamine ([(3)H]NMS) at M(1) mAChRs stably expressed in Chinese hamster ovary (CHO) cell membranes. However, SCH-202676 completely inhibited the binding of [(3)H]NMS in membrane preparations, with a Hill slope significantly greater than unity, indicative of positive cooperativity in the binding of the inhibitor. Moreover, SCH-202676 caused dextral shifts of the [(3)H]NMS saturation binding curve that were greater than expected for a competitive interaction. The addition of C(7)/3-phth (100 microM) had no significant effect on the inhibitory potency of SCH-202676. In contrast to the findings in cell membranes, the interaction between SCH-202676 and [(3)H]NMS in intact M(1) CHO cells yielded saturation and inhibition isotherms that were compatible with the predictions for a competitive interaction. Intact cell assays of acetylcholine-mediated phosphoinositide hydrolysis in the absence or presence of SCH-202676 revealed a mixed competitive/noncompetitive mode of interaction that was dependent on the concentration of SCH-202676. These data reveal that the nature of the interaction between SCH-202676 and the M(1) mAChR is dependent on whether it is studied using intact versus broken cell preparations. It is proposed that SCH-202676 uses a dual mode of ligand-receptor interaction involving both extra- and intracellular attachment points on the M(1) mAChR that are distinct from the allosteric binding site recognized by prototypical mAChR modulators such as C(7)/3-phth.[1]

References

 
WikiGenes - Universities