The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Agonist-induced activation of matrix metalloproteinase-7 promotes vasoconstriction through the epidermal growth factor-receptor pathway.

Matrix metalloproteinase (MMP)-dependent shedding of heparin- binding epidermal growth factor (HB-EGF) and subsequent activation of the EGF receptor (EGFR) in the cardiovasculature is emerging as a unique mechanism signaling growth effects of diverse G protein-coupled receptors (GPCRs). Among these GPCRs are adrenoceptors and angiotensin receptors that contribute to the pathogenesis of hypertension through their vasoconstrictive and growth effects. Focusing on alpha(1b)-adrenoceptors, we suggest here that MMP-dependent activation of the EGFR promotes vasoconstriction as well as growth. We identified MMP-7 as a major HB-EGF sheddase in rat mesenteric arteries and alpha(1b)-adrenoceptors, angiotensin receptors, and hypertension-stimulated MMP-7 activity. Adrenoceptors stimulated EGFR autophosphorylation in arteries, and this transactivation was opposed by the MMP-7 inhibitor GM6001 as well as MMP-7-specific antibodies. In isolated microperfused arteries, blockade of EGFR transactivation with inhibitors of the EGFR (AG1478 and PD153035), HB-EGF (CRM197 and neutralizing antibodies), or MMPs (doxycycline) inhibited adrenergic vasoconstriction. In spontaneously hypertensive rats but not in normotensive rats, the inhibition of MMPs with doxycycline (19.2 mg/d from week 7 until week 12) reduced systolic blood pressure and attenuated HB-EGF shedding in the mesenteric arteries. These findings suggest a previously unknown mechanism of vasoregulation whereby agonists of certain GPCRs (such as adrenoceptors and angiotensin receptors) activate MMPs (such as MMP-7) that shed EGFR ligands (such as HB-EGF), which then activate the EGFR, thereby promoting vasoconstriction as well as growth. Because this mechanism is triggered by agonists typically overexpressed in hypertension, its blockade may have therapeutic potential for simultaneously inhibiting pathological vasoconstriction and growth in hypertensive disorders.[1]


WikiGenes - Universities