The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Myeloperoxidase-catalyzed oxidation of chloroacetonitrile to cyanide.

Chloroacetonitrile (CAN) is a disinfection by-product of chlorination of drinking water. Epidemiological studies indicate that it might present a potential hazard to human health. The present work provides an evidence for CAN activation to cyanide (CN-) by myeloperoxidase (MPO)/hydrogen peroxide (H2O2)/chloride (Cl-) system in vitro. Optimum conditions for the oxidation of CAN to CN- were characterized with respect to pH, temperature and time of incubation as well as CAN, MPO, H2O2 and KCl concentrations in incubation mixtures. The kinetic parameters governing the reaction; maximum velocity (Vmax) and Michaelis-Menten constant (Km) were assessed. Oxidation of CAN to CN- by NaOCl alone was shown. Addition of the MPO inhibitors; sodium azide (NaN3), 4-amino benzoic acid hydrazine (ABAH) or indomethacin to the reaction mixtures resulted in a significant decrease in the rate of CAN oxidation. Inclusion of the antioxidant enzyme catalase (CAT) in the incubation mixtures resulted in a significant decrease in the rate of CAN oxidation and CN- formation. Addition of the sulfhydryl compounds; glutathione (GSH), N-acetyl-L-cysteine (NAC), L-cysteine or D-penicillamine significantly enhanced the rate of CN- release. In conclusion, MPO/H2O2/Cl- system has the ability of oxidizing CAN to CN-. The present results represent a novel pathway for CAN activation and might be important in explaining CAN-induced toxicity.[1]

References

  1. Myeloperoxidase-catalyzed oxidation of chloroacetonitrile to cyanide. Abdel-Naim, A.B., Mohamadin, A.M. Toxicol. Lett. (2004) [Pubmed]
 
WikiGenes - Universities