ZNF143 mediates basal and tissue-specific expression of human transaldolase.
Transaldolase regulates redox-dependent apoptosis through controlling NADPH and ribose 5-phosphate production via the pentose phosphate pathway. The minimal promoter sufficient to drive chloramphenicol acetyltransferase reporter gene activity was mapped to nucleotides -49 to -1 relative to the transcription start site of the human transaldolase gene. DNase I footprinting with nuclear extracts of transaldolase-expressing cell lines unveiled protection of nucleotides -29 to -16. Electrophoretic mobility shift assays identified a single dominant DNA-protein complex that was abolished by consensus sequence for transcription factor ZNF143/76 or mutation of the ZNF76/143 motif within the transaldolase promoter. Mutation of an AP-2alpha recognition sequence, partially overlapping the ZNF143 motif, increased TAL-H promoter activity in HeLa cells, without significant impact on HepG2 cells, which do not express AP-2alpha. Cooperativity of ZNF143 with AP-2alpha was supported by supershift analysis of HeLa cells where AP-2 may act as cell type-specific repressor of TAL promoter activity. However, overexpression of full-length ZNF143, ZNF76, or dominant-negative DNA-binding domain of ZNF143 enhanced, maintained, or abolished transaldolase promoter activity, respectively, in HepG2 and HeLa cells, suggesting that ZNF143 initiates transcription from the transaldolase core promoter. ZNF143 overexpression also increased transaldolase enzyme activity. ZNF143 and transaldolase expression correlated in 21 different human tissues and were coordinately upregulated 14- and 34-fold, respectively, in lactating mammary glands compared with nonlactating ones. Chromatin immunoprecipitation studies confirm that ZNF143/73 associates with the transaldolase promoter in vivo. Thus, ZNF143 plays a key role in basal and tissue-specific expression of transaldolase and regulation of the metabolic network controlling cell survival and differentiation.[1]References
- ZNF143 mediates basal and tissue-specific expression of human transaldolase. Grossman, C.E., Qian, Y., Banki, K., Perl, A. J. Biol. Chem. (2004) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg