The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Lyn tyrosine kinase regulates thrombopoietin-induced proliferation of hematopoietic cell lines and primary megakaryocytic progenitors.

In this study we demonstrate that thrombopoietin (TPO)-stimulated Src family kinases (SFKs) inhibit cellular proliferation and megakaryocyte differentiation. Using the Src kinase inhibitors pyrolopyrimidine 1 and 2 (PP1, PP2), we show that TPO-dependent proliferation of BaF3/Mpl cells was enhanced at concentrations that are specific for SFKs. Similarly, proliferation is increased after introducing a dominant-negative form of Lyn into BaF3/Mpl cells. Murine marrow cells from Lyn-deficient mice or wild-type mice cultured in the presence of the Src inhibitor, PP1, yielded a greater number of mature megakaryocytes and increased nuclear ploidy. Truncation and targeted mutation of the Mpl cytoplasmic domain indicate that Y112 is critical for Lyn activation. Examining the molecular mechanism for this antiproliferative effect, we determined that SFK inhibitors did not affect tyrosine phosphorylation of Janus kinase 2 (JAK2), Shc, signal transducer and activator of transcription (STAT)5, or STAT3. In contrast, pretreatment of cells with PP2 increased Erk1/2 (mitogen-activated protein kinase [ MAPK]) phosphorylation and in vitro kinase activity, particularly after prolonged TPO stimulation. Taken together, our results show that Mpl stimulation results in the activation of Lyn kinase, which appears to limit the proliferative response through a signaling cascade that regulates MAPK activity. These data suggest that SFKs modify the rate of TPO-induced proliferation and are likely to affect cell cycle regulation during megakaryocytopoiesis.[1]


WikiGenes - Universities