Myocardial fibrosis and diastolic dysfunction in deoxycorticosterone acetate-salt hypertensive rats is ameliorated by the peroxisome proliferator-activated receptor-alpha activator fenofibrate, partly by suppressing inflammatory responses associated with the nuclear factor-kappa-B pathway.
OBJECTIVES: We sought to clarify that a peroxisome proliferator-activated receptor-alpha (PPAR-alpha) activator inhibits myocardial fibrosis and its resultant diastolic dysfunction in hypertensive heart disease, as well as to investigate whether inflammatory mediators through the nuclear factor (NF)-kappa-B pathway are involved in the effects. BACKGROUND: Patients with hypertensive heart disease often have diastolic heart failure without systolic dysfunction. Meanwhile, it has been well established in atherosclerosis that PPAR-alpha activation negatively regulates early inflammation. In hypertensive hearts, however, it is still unclear whether PPAR-alpha activation inhibits inflammation and fibrosis. METHODS: Twenty-one rats were randomly separated into the following three groups: deoxycorticosterone acetate (DOCA)-salt hypertensive rats treated with a PPAR-alpha activator, fenofibrate (80 mg/kg/day for 5 weeks); DOCA-salt rats treated with vehicle only; and uni-nephrectomized rats as normotensive controls. RESULTS: Fenofibrate significantly inhibited the elevation of left ventricular end-diastolic pressure and the reduction of the magnitude of the negative maximum rate of left ventricular pressure rise and decline, corrected by left ventricular pressure (-dP/dt(max)/P), which are indicators of diastolic dysfunction. Next, fenofibrate prevented myocardial fibrosis and reduced the hydroxyproline content and procollagen I and III messenger ribonucleic acid expression. Finally, inflammatory gene expression associated with NF-kappa-B (interleukin-6, cyclooxygenase-2, vascular cell adhesion molecule-1, and monocyte chemoattractant protein-1), which is upregulated in DOCA-salt rats, was significantly suppressed by fenofibrate. Activation of NF-kappa-B and expression of I-kappa-B-alpha in DOCA-salt rats were normalized by fenofibrate. CONCLUSIONS: A PPAR-alpha activator reduced myocardial fibrosis and prevented the development of diastolic dysfunction in DOCA-salt rats. The effects of a PPAR-alpha activator may be mediated partly by prevention of inflammatory mediators through the NF-kappa-B pathway. These results suggest that treatment with PPAR-alpha activators will improve diastolic dysfunction in hypertensive heart disease.[1]References
- Myocardial fibrosis and diastolic dysfunction in deoxycorticosterone acetate-salt hypertensive rats is ameliorated by the peroxisome proliferator-activated receptor-alpha activator fenofibrate, partly by suppressing inflammatory responses associated with the nuclear factor-kappa-B pathway. Ogata, T., Miyauchi, T., Sakai, S., Takanashi, M., Irukayama-Tomobe, Y., Yamaguchi, I. J. Am. Coll. Cardiol. (2004) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg