The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Disruption of beta-catenin pathway or genomic instability define two distinct categories of liver cancer in transgenic mice.

BACKGROUND & AIMS: Human liver cancer can be divided into 2 categories that are characterized by activation of beta-catenin and genomic instability. Here we investigate whether similar categories exist among 5 transgenic models of liver cancer, including c-myc, transforming growth factor-alpha, E2F-1, c-myc/transforming growth factor-alpha, and c-myc/E2F-1 mice. METHODS: The random amplified polymorphic DNA method was used to assess the overall genomic instability, and chromosomal loci affected by genomic alterations were determined by microsatellite analysis. beta-Catenin mutations and deletions were analyzed by polymerase chain reaction and sequencing screening. Cellular localization of beta-catenin and expression of alpha-fetoprotein, a prognostic marker of hepatocellular carcinoma, were investigated by immunohistochemistry. RESULTS: Liver tumors from the transgenic mice could be divided into 2 broad categories characterized by extensive genomic instability (exemplified by the c-myc/transforming growth factor-alpha mouse) and activation of beta-catenin (exemplified by the c-myc/E2F-1 mouse). The c-myc/transforming growth factor-alpha tumors displayed extensive genomic instability with recurrent loss of heterozygosity at chromosomes 1, 2, 4, 6, 7, 9, 12, 14, and X and a low rate of beta-catenin activation. The genomic instability was evident from the early dysplastic stage and occurred concomitantly with increased expression of alpha-fetoprotein. The c-myc/E2F-1 tumors were characterized by a high frequency of beta-catenin activation in the presence of a relatively stable genome and low alpha-fetoprotein levels. CONCLUSIONS: We have identified 2 prototype experimental models, i.e., c-myc/transforming growth factor-alpha and c-myc/E2F-1 mice, for the 2 categories of human hepatocellular carcinoma characterized by genomic instability and beta-catenin activation, respectively. These mouse models will assist in the elucidation of the molecular basis of human hepatocellular carcinoma.[1]


  1. Disruption of beta-catenin pathway or genomic instability define two distinct categories of liver cancer in transgenic mice. Calvisi, D.F., Factor, V.M., Ladu, S., Conner, E.A., Thorgeirsson, S.S. Gastroenterology (2004) [Pubmed]
WikiGenes - Universities