The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

KLF11 mediates a critical mechanism in TGF-beta signaling that is inactivated by Erk-MAPK in pancreatic cancer cells.

BACKGROUND & AIMS: Smad-regulated transcription plays a central role in transforming growth factor (TGF)-beta-induced cell growth inhibition and tumor suppression. Like the Smads, KLF11 is an early response transcription factor that mediates TGF-beta-induced growth inhibition in untransformed epithelial cells. Here, we investigated the functional implications of KLF11 in TGF-beta signaling and transcription in normal epithelial as well as pancreatic cancer cells. METHODS: The effects of KLF11 on TGF-beta signaling and transcription were examined on the levels of reporter transactivation, Smad2 phosphorylation, and expression of endogenous TGF-beta-regulated genes. Promoter analysis, real-time polymerase chain reaction, and coimmunoprecipitation studies were performed to study KLF11- induced and mSin3A corepressor- mediated repression of Smad7. Erk-induced KLF11 phosphorylation was examined in vitro and in vivo, and its impact on KLF11-mSin3A-mediated Smad7 repression was verified in pancreatic cancer cells using site-directed mutagenesis. RESULTS: KLF11 potentiates TGF-beta signaling by terminating the inhibitory Smad7 loop. Mechanistically, KLF11 represses TGF-beta- induced transcription from the Smad7 promoter by recruiting mSin3a via GC-rich sites. This function is inhibited in pancreatic cancer cells with oncogenic Ras mutations, in which Erk/mitogen-activated protein kinase phosphorylates KLF11, leading to disruption of KLF11-mSin3a interaction. Expression of an Erk-insensitive KLF11 mutant restores both mSin3a binding and Smad7 repression and results in enhanced TGF-beta signaling in pancreatic cancer cells. CONCLUSIONS: These results define a novel mechanism in TGF-beta-regulated gene expression. KLF11 potentiates Smad-signaling activity in normal epithelial cells through termination of the negative feedback loop imposed by Smad7. The fact that this function of KLF11 is inhibited by oncogenic Erk/mitogen-activated protein kinase in pancreatic cancer cells emphasizes the importance of this mechanism for oncogenesis.[1]

References

  1. KLF11 mediates a critical mechanism in TGF-beta signaling that is inactivated by Erk-MAPK in pancreatic cancer cells. Ellenrieder, V., Buck, A., Harth, A., Jungert, K., Buchholz, M., Adler, G., Urrutia, R., Gress, T.M. Gastroenterology (2004) [Pubmed]
 
WikiGenes - Universities