The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Generation of synthetic severe acute respiratory syndrome coronavirus pseudoparticles: implications for assembly and vaccine production.

The recently emerged severe acute respiratory syndrome coronavirus (SARS-CoV) contains four structural genes, two replicase-transcriptase open reading frames, and more than five potential genes of unknown function. Despite this relative simplicity, the molecular regulation of SARS-CoV replication and assembly is not understood. Here, we report that two viral genes, encoding the SARS-CoV membrane (M) and nucleocapsid ( N) proteins, are necessary and sufficient for formation of virus-like particles. Expression vectors encoding these two proteins were synthesized by using preferred human codons. When M and N expression plasmids were cotransfected into human 293 renal epithelial cells, pseudoparticles formed readily. The addition of a third gene, encoding the spike (S) glycoprotein, facilitated budding of particles that contained a corona-like halo resembling SARS-CoV when examined by transmission electron microscopy, with a buoyant density characteristic of coronaviruses. Specific biochemical interactions of these proteins were also shown in vitro. The S, M, and N proteins of the SARS-CoV are, therefore, necessary and sufficient for pseudovirus assembly. These findings advance the understanding of the morphogenesis of SARS-CoV and enable the generation of safe, conformational mimetics of the SARS virus that may facilitate the development of vaccines and antiviral drugs.[1]


WikiGenes - Universities