The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

SARS virus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of SARS virus

 

High impact information on SARS virus

 

Chemical compound and disease context of SARS virus

 

Biological context of SARS virus

  • In this study, the codon-optimized S gene of SARS-CoV was synthesized to construct DNA vaccine plasmids expressing either the full-length or segments of the S protein [15].
  • We developed a set of three real-time reverse transcription-polymerase chain reaction (PCR) assays that amplify three different regions of the SARS-associated coronavirus (SARS-CoV), can be run in parallel or in a single tube, and can detect <10 genome equivalents of SARS-CoV [16].
  • We further demonstrated, via transient transfection experiments, that the siRNA targeting the Leader sequence had a much stronger inhibitory effect on SARS-CoV replication than the siRNAs targeting the Spike gene or the antisense oligodeoxynucleotides did [17].
  • These results show that a DNA vaccine encoding CRT linked to a SARS-CoV antigen is capable of generating strong N-specific humoral and cellular immunity and may potentially be useful for control of infection with SARS-CoV [18].
  • In this report, we show that the SARS-CoV S glycoprotein mediates viral entry through pH-dependent endocytosis [19].
 

Anatomical context of SARS virus

  • With the aim of developing therapeutic agents, we have tested peptides derived from the membrane-proximal (HR2) and membrane-distal (HR1) heptad repeat region of the spike protein as inhibitors of SARS-CoV infection of Vero cells [20].
  • Routine collection and testing of stool and sputum specimens of probable SARS case-patients may help the early detection of SARS-CoV infection [21].
  • Remarkably, endothelial cells, which express ACE2 to a high level, have not been shown to be infected by SARS-CoV [22].
  • The SARS-CoV receptor, human angiotensin 1-converting enzyme 2 (hACE2), was detected in ciliated airway epithelial cells of human airway tissues derived from nasal or tracheobronchial regions, suggesting that SARS-CoV may infect the proximal airways [23].
  • These results confirm the predicted protein processing pattern for mature SARS-CoV replicase proteins, demonstrate localization of replicase proteins to cytoplasmic complexes containing markers for autophagosome membranes, and suggest conservation of protein epitopes in the replicase and nucleocapsid of SARS-CoV and the group II coronavirus, MHV [24].
 

Gene context of SARS virus

  • Further research showed that HAb18G/CD147, a transmembrane molecule, was highly expressed on 293 cells and that CyPA was integrated with SARS-CoV [25].
  • RESULTS: SARS-CoV virus is able to induce both IFN-alpha and -gamma mRNA accumulation and protein release in a dose-dependent manner, MOI 10 being the most effective [26].
  • Collectively, these results may aid us in elucidating the mechanism pertaining to formation of viral nucleocapsid core, and designing molecular approaches to intervene SARS-CoV replication [27].
  • Induction level of suppressor of cytokine signaling-3 (SOCS3) by SARS-CoV was significantly lower than that by RSV in spite of the significant production of IL-6 [28].
  • We found that the amount of transcription factors binding to promoter sequences of c-Fos, ATF2, CREB-1, and FosB was increased by the expression of SARS-CoV N [29].
 

Analytical, diagnostic and therapeutic context of SARS virus

References

  1. A human neutralizing antibody against a conformational epitope shared by oligomeric SARS S1 protein. Duan, J., Ji, X., Feng, J., Han, W., Zhang, P., Cao, W., Guo, X., Qi, C., Yang, D., Jin, G., Gao, G., Yan, X. Antivir. Ther. (Lond.) (2006) [Pubmed]
  2. Recombinant severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein forms a dimer through its C-terminal domain. Yu, I.M., Gustafson, C.L., Diao, J., Burgner, J.W., Li, Z., Zhang, J., Chen, J. J. Biol. Chem. (2005) [Pubmed]
  3. Significant redox insensitivity of the functions of the SARS-CoV spike glycoprotein: comparison with HIV envelope. Lavillette, D., Barbouche, R., Yao, Y., Boson, B., Cosset, F.L., Jones, I.M., Fenouillet, E. J. Biol. Chem. (2006) [Pubmed]
  4. SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells. Huang, I.C., Bosch, B.J., Li, F., Li, W., Lee, K.H., Ghiran, S., Vasilieva, N., Dermody, T.S., Harrison, S.C., Dormitzer, P.R., Farzan, M., Rottier, P.J., Choe, H. J. Biol. Chem. (2006) [Pubmed]
  5. Amino acids 270 to 510 of the severe acute respiratory syndrome coronavirus spike protein are required for interaction with receptor. Babcock, G.J., Esshaki, D.J., Thomas, W.D., Ambrosino, D.M. J. Virol. (2004) [Pubmed]
  6. Homozygous L-SIGN (CLEC4M) plays a protective role in SARS coronavirus infection. Chan, V.S., Chan, K.Y., Chen, Y., Poon, L.L., Cheung, A.N., Zheng, B., Chan, K.H., Mak, W., Ngan, H.Y., Xu, X., Screaton, G., Tam, P.K., Austyn, J.M., Chan, L.C., Yip, S.P., Peiris, M., Khoo, U.S., Lin, C.L. Nat. Genet. (2006) [Pubmed]
  7. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Kuba, K., Imai, Y., Rao, S., Gao, H., Guo, F., Guan, B., Huan, Y., Yang, P., Zhang, Y., Deng, W., Bao, L., Zhang, B., Liu, G., Wang, Z., Chappell, M., Liu, Y., Zheng, D., Leibbrandt, A., Wada, T., Slutsky, A.S., Liu, D., Qin, C., Jiang, C., Penninger, J.M. Nat. Med. (2005) [Pubmed]
  8. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Weiss, S.R., Navas-Martin, S. Microbiol. Mol. Biol. Rev. (2005) [Pubmed]
  9. Pathogenesis of severe acute respiratory syndrome. Lau, Y.L., Peiris, J.S. Curr. Opin. Immunol. (2005) [Pubmed]
  10. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. Li, W., Zhang, C., Sui, J., Kuhn, J.H., Moore, M.J., Luo, S., Wong, S.K., Huang, I.C., Xu, K., Vasilieva, N., Murakami, A., He, Y., Marasco, W.A., Guan, Y., Choe, H., Farzan, M. EMBO J. (2005) [Pubmed]
  11. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Jeffers, S.A., Tusell, S.M., Gillim-Ross, L., Hemmila, E.M., Achenbach, J.E., Babcock, G.J., Thomas, W.D., Thackray, L.B., Young, M.D., Mason, R.J., Ambrosino, D.M., Wentworth, D.E., Demartini, J.C., Holmes, K.V. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  12. Solution structure of the severe acute respiratory syndrome-coronavirus heptad repeat 2 domain in the prefusion state. Hakansson-McReynolds, S., Jiang, S., Rong, L., Caffrey, M. J. Biol. Chem. (2006) [Pubmed]
  13. Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). Lambert, D.W., Yarski, M., Warner, F.J., Thornhill, P., Parkin, E.T., Smith, A.I., Hooper, N.M., Turner, A.J. J. Biol. Chem. (2005) [Pubmed]
  14. Severe acute respiratory syndrome: clinical outcome and prognostic correlates. Tsui, P.T., Kwok, M.L., Yuen, H., Lai, S.T. Emerging Infect. Dis. (2003) [Pubmed]
  15. Identification of two neutralizing regions on the severe acute respiratory syndrome coronavirus spike glycoprotein produced from the mammalian expression system. Wang, S., Chou, T.H., Sakhatskyy, P.V., Huang, S., Lawrence, J.M., Cao, H., Huang, X., Lu, S. J. Virol. (2005) [Pubmed]
  16. SARS coronavirus detection. Nitsche, A., Schweiger, B., Ellerbrok, H., Niedrig, M., Pauli, G. Emerging Infect. Dis. (2004) [Pubmed]
  17. siRNA targeting the leader sequence of SARS-CoV inhibits virus replication. Li, T., Zhang, Y., Fu, L., Yu, C., Li, X., Li, Y., Zhang, X., Rong, Z., Wang, Y., Ning, H., Liang, R., Chen, W., Babiuk, L.A., Chang, Z. Gene Ther. (2005) [Pubmed]
  18. Generation and characterization of DNA vaccines targeting the nucleocapsid protein of severe acute respiratory syndrome coronavirus. Kim, T.W., Lee, J.H., Hung, C.F., Peng, S., Roden, R., Wang, M.C., Viscidi, R., Tsai, Y.C., He, L., Chen, P.J., Boyd, D.A., Wu, T.C. J. Virol. (2004) [Pubmed]
  19. pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN. Yang, Z.Y., Huang, Y., Ganesh, L., Leung, K., Kong, W.P., Schwartz, O., Subbarao, K., Nabel, G.J. J. Virol. (2004) [Pubmed]
  20. Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides. Bosch, B.J., Martina, B.E., Van Der Zee, R., Lepault, J., Haijema, B.J., Versluis, C., Heck, A.J., De Groot, R., Osterhaus, A.D., Rottier, P.J. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  21. SARS-associated coronavirus transmission, United States. Isakbaeva, E.T., Khetsuriani, N., Beard, R.S., Peck, A., Erdman, D., Monroe, S.S., Tong, S., Ksiazek, T.G., Lowther, S., Pandya-Smith, I., Anderson, L.J., Lingappa, J., Widdowson, M.A. Emerging Infect. Dis. (2004) [Pubmed]
  22. Exploring the pathogenesis of severe acute respiratory syndrome (SARS): the tissue distribution of the coronavirus (SARS-CoV) and its putative receptor, angiotensin-converting enzyme 2 (ACE2). To, K.F., Lo, A.W. J. Pathol. (2004) [Pubmed]
  23. Severe acute respiratory syndrome coronavirus infection of human ciliated airway epithelia: role of ciliated cells in viral spread in the conducting airways of the lungs. Sims, A.C., Baric, R.S., Yount, B., Burkett, S.E., Collins, P.L., Pickles, R.J. J. Virol. (2005) [Pubmed]
  24. Identification and characterization of severe acute respiratory syndrome coronavirus replicase proteins. Prentice, E., McAuliffe, J., Lu, X., Subbarao, K., Denison, M.R. J. Virol. (2004) [Pubmed]
  25. Function of HAb18G/CD147 in invasion of host cells by severe acute respiratory syndrome coronavirus. Chen, Z., Mi, L., Xu, J., Yu, J., Wang, X., Jiang, J., Xing, J., Shang, P., Qian, A., Li, Y., Shaw, P.X., Wang, J., Duan, S., Ding, J., Fan, C., Zhang, Y., Yang, Y., Yu, X., Feng, Q., Li, B., Yao, X., Zhang, Z., Li, L., Xue, X., Zhu, P. J. Infect. Dis. (2005) [Pubmed]
  26. Coordinate induction of IFN-alpha and -gamma by SARS-CoV also in the absence of virus replication. Castilletti, C., Bordi, L., Lalle, E., Rozera, G., Poccia, F., Agrati, C., Abbate, I., Capobianchi, M.R. Virology (2005) [Pubmed]
  27. Analysis of multimerization of the SARS coronavirus nucleocapsid protein. He, R., Dobie, F., Ballantine, M., Leeson, A., Li, Y., Bastien, N., Cutts, T., Andonov, A., Cao, J., Booth, T.F., Plummer, F.A., Tyler, S., Baker, L., Li, X. Biochem. Biophys. Res. Commun. (2004) [Pubmed]
  28. Cytokine regulation in SARS coronavirus infection compared to other respiratory virus infections. Okabayashi, T., Kariwa, H., Yokota, S., Iki, S., Indoh, T., Yokosawa, N., Takashima, I., Tsutsumi, H., Fujii, N. J. Med. Virol. (2006) [Pubmed]
  29. Activation of AP-1 signal transduction pathway by SARS coronavirus nucleocapsid protein. He, R., Leeson, A., Andonov, A., Li, Y., Bastien, N., Cao, J., Osiowy, C., Dobie, F., Cutts, T., Ballantine, M., Li, X. Biochem. Biophys. Res. Commun. (2003) [Pubmed]
  30. Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Bisht, H., Roberts, A., Vogel, L., Bukreyev, A., Collins, P.L., Murphy, B.R., Subbarao, K., Moss, B. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  31. Apical entry and release of severe acute respiratory syndrome-associated coronavirus in polarized Calu-3 lung epithelial cells. Tseng, C.T., Tseng, J., Perrone, L., Worthy, M., Popov, V., Peters, C.J. J. Virol. (2005) [Pubmed]
  32. Tissue and cellular tropism of the coronavirus associated with severe acute respiratory syndrome: an in-situ hybridization study of fatal cases. To, K.F., Tong, J.H., Chan, P.K., Au, F.W., Chim, S.S., Chan, K.C., Cheung, J.L., Liu, E.Y., Tse, G.M., Lo, A.W., Lo, Y.M., Ng, H.K. J. Pathol. (2004) [Pubmed]
  33. SARS antibody test for serosurveillance. Hsueh, P.R., Kao, C.L., Lee, C.N., Chen, L.K., Ho, M.S., Sia, C., Fang, X.D., Lynn, S., Chang, T.Y., Liu, S.K., Walfield, A.M., Wang, C.Y. Emerging Infect. Dis. (2004) [Pubmed]
 
WikiGenes - Universities