The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Potent activation of the human tandem pore domain K channel TRESK with clinical concentrations of volatile anesthetics.

The tandem pore domain K channel family mediates background K currents present in excitable cells. Currents passed by certain members of the family are enhanced by volatile anesthetics, thus suggesting a novel mechanism of anesthesia. The newest member of the family, termed TRESK (TWIK [tandem pore domain weak inward rectifying channel]-related spinal cord K channel), has not been studied for anesthetic sensitivity. We isolated the coding sequence for TRESK from human spinal cord RNA and functionally expressed it in Xenopus oocytes and transfected COS-7 cells. With both whole-cell voltage-clamp and patch-clamp recording, TRESK currents increased up to three-fold by clinical concentrations of isoflurane, halothane, sevoflurane, and desflurane. Nonanesthetics (nonimmobilizers) had no effect on TRESK. Various IV anesthetics, including etomidate, thiopental, and propofol, have a minimal effect on TRESK currents. Amide and ester local anesthetics inhibit TRESK in a concentration-dependent manner but at concentrations generally larger than those that inhibit other tandem pore domain K channels. We also determined that TRESK is found not only in spinal cord, but also in human brain RNA. These results identify TRESK as a target of volatile anesthetics and suggest a role for this background K channel in mediating the effects of inhaled anesthetics in the central nervous system.[1]

References

 
WikiGenes - Universities