The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

ZINC03812960     (2S)-2-chloro-2- (difluoromethoxy)-1,1,1...

Synonyms: AC1NA03C, 3f78, ICF
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of isoflurane

 

Psychiatry related information on isoflurane

 

High impact information on isoflurane

 

Chemical compound and disease context of isoflurane

 

Biological context of isoflurane

  • The kSM increased from 3.7 +/- 0.5 to 4.8 +/- 0.8 (p less than 0.01) with infusion of dobutamine (after reversal of beta-blockade) and decreased to 3.1 +/- 0.3 (p less than 0.05) with inhalation of isoflurane, a negative inotrope, during beta-blockade (p less than 0.05) [21].
  • CONCLUSIONS: Isoflurane attenuates cAMP-mediated vasodilation [22].
  • CONCLUSIONS: These data support a cardioprotective effect of isoflurane and, more generally, demonstrate the feasibility of pharmacologically preconditioning the human heart during cardiac surgery [15].
  • Translation initiation was inhibited by isoflurane even when eIF2alpha phosphorylation decreased and this inhibition was GCN-independent [23].
  • At columnar resolution, the specificity of intrinsic cerebral blood volume (CBV) response to orientation-selective columns in isoflurane-anesthetized cats was determined for CBV-weighted fMRI signals after injection of iron oxide at a dose of 10 mg Fe/kg [24].
 

Anatomical context of isoflurane

 

Associations of isoflurane with other chemical compounds

 

Gene context of isoflurane

  • The ZZZ1 and MDP1/RSP5 gene products appear to play important roles in determining effective anesthetic dose in yeast since increased levels of either gene increases isoflurane sensitivity whereas decreased activity decreases sensitivity [34].
  • The zzz3-1 mutation renders yeast isoflurane resistant and is an allele of GCN3 [23].
  • Loss-of-function mutants of the gene goa-1, which codes for the alpha-subunit of Go, have EC(50)s for the VA isoflurane of 1.7- to 2.4-fold that of wild type [35].
  • Strains overexpressing egl-10, which codes for an RGS protein negatively regulating goa-1, are also isoflurane resistant [35].
  • It is suggested that in wild-type mice, eNOS and nNOS contribute to isoflurane-induced increase in rCBF [36].
 

Analytical, diagnostic and therapeutic context of isoflurane

  • To study the physiological significance of changes in coronary perfusion on global and regional myocardial function in situ, the left anterior descending coronary artery of isoflurane-anesthetized swine was cannulated, and perfusion was varied [37].
  • In 10 of them, preconditioning was elicited after the onset of cardiopulmonary bypass via a 5-minute exposure to isoflurane (2.5 minimum alveolar concentration), followed by a 10-minute washout before aortic cross-clamping and cardioplegic arrest [15].
  • BACKGROUND: Experimentally, isoflurane, a commonly used volatile anesthetic agent, mimics the cardioprotective effects of ischemic preconditioning via a mechanism that could involve the activation of protein kinase C. The present study was designed to assess the clinical relevance of this observation in patients undergoing elective CABG [15].
  • When a precision vaporizer is available, isoflurane is usually the agent of choice [38].
  • To investigate this, gradient-echo BOLD fMRI in response to visual stimulus was obtained in isoflurane-anesthetized cats at 9.4 T [39].

References

  1. Radiosensitization of hypoxic tumor cells by dodecafluoropentane: a gas-phase perfluorochemical emulsion. Koch, C.J., Oprysko, P.R., Shuman, A.L., Jenkins, W.T., Brandt, G., Evans, S.M. Cancer Res. (2002) [Pubmed]
  2. Fulminant hepatic failure after repeated exposure to isoflurane anesthesia: a case report. Brunt, E.M., White, H., Marsh, J.W., Holtmann, B., Peters, M.G. Hepatology (1991) [Pubmed]
  3. Cerebellar ataxia, seizures, premature death, and cardiac abnormalities in mice with targeted disruption of the Cacna2d2 gene. Ivanov, S.V., Ward, J.M., Tessarollo, L., McAreavey, D., Sachdev, V., Fananapazir, L., Banks, M.K., Morris, N., Djurickovic, D., Devor-Henneman, D.E., Wei, M.H., Alvord, G.W., Gao, B., Richardson, J.A., Minna, J.D., Rogawski, M.A., Lerman, M.I. Am. J. Pathol. (2004) [Pubmed]
  4. Effects of steal-prone anatomy on intraoperative myocardial ischemia. The SPI Research Group. Leung, J.M., Hollenberg, M., O'Kelly, B.F., Kao, A., Mangano, D.T. J. Am. Coll. Cardiol. (1992) [Pubmed]
  5. Anesthetic effects on the glycerol model of rhabdomyolysis-induced acute renal failure in rats. Lochhead, K.M., Kharasch, E.D., Zager, R.A. J. Am. Soc. Nephrol. (1998) [Pubmed]
  6. Hyperlocomotion during recovery from isoflurane anesthesia is associated with increased dopamine turnover in the nucleus accumbens and striatum in mice. Irifune, M., Sato, T., Nishikawa, T., Masuyama, T., Nomoto, M., Fukuda, T., Kawahara, M. Anesthesiology (1997) [Pubmed]
  7. Uniform range of conduction times from the lateral amygdala to distributed perirhinal sites. Pelletier, J.G., Paré, D. J. Neurophysiol. (2002) [Pubmed]
  8. The subjective, behavioral and cognitive effects of subanesthetic concentrations of isoflurane and nitrous oxide in healthy volunteers. Zacny, J.P., Sparacino, G., Hoffmann, P., Martin, R., Lichtor, J.L. Psychopharmacology (Berl.) (1994) [Pubmed]
  9. Isoflurane causes anterograde but not retrograde amnesia for pavlovian fear conditioning. Dutton, R.C., Maurer, A.J., Sonner, J.M., Fanselow, M.S., Laster, M.J., Eger, E.I. Anesthesiology (2002) [Pubmed]
  10. A succession of anesthetic endpoints in the Drosophila brain. van Swinderen, B. J. Neurobiol. (2006) [Pubmed]
  11. Stereospecific effects of inhalational general anesthetic optical isomers on nerve ion channels. Franks, N.P., Lieb, W.R. Science (1991) [Pubmed]
  12. Noninvasive observations of fluorinated anesthetics in rabbit brain by fluorine-19 nuclear magnetic resonance. Wyrwicz, A.M., Pszenny, M.H., Schofield, J.C., Tillman, P.C., Gordon, R.E., Martin, P.A. Science (1983) [Pubmed]
  13. Intracisternal injection of apolipoprotein A-IV inhibits gastric secretion in pylorus-ligated conscious rats. Okumura, T., Fukagawa, K., Tso, P., Taylor, I.L., Pappas, T.N. Gastroenterology (1994) [Pubmed]
  14. Hepatic glutathione S-transferase release after halothane anaesthesia: open randomised comparison with isoflurane. Allan, L.G., Hussey, A.J., Howie, J., Beckett, G.J., Smith, A.F., Hayes, J.D., Drummond, G.B. Lancet (1987) [Pubmed]
  15. Evidence for preconditioning by isoflurane in coronary artery bypass graft surgery. Belhomme, D., Peynet, J., Louzy, M., Launay, J.M., Kitakaze, M., Menasché, P. Circulation (1999) [Pubmed]
  16. Isoflurane and propofol block neurotoxicity caused by MK-801 in the rat posterior cingulate/retrosplenial cortex. Jevtović-Todorović, V., Kirby, C.O., Olney, J.W. J. Cereb. Blood Flow Metab. (1997) [Pubmed]
  17. Reversible focal ischemia in the rat: effects of halothane, isoflurane, and methohexital anesthesia. Warner, D.S., Zhou, J.G., Ramani, R., Todd, M.M. J. Cereb. Blood Flow Metab. (1991) [Pubmed]
  18. Isoflurane induces a protein kinase C alpha-dependent increase in cell-surface protein level and activity of glutamate transporter type 3. Huang, Y., Zuo, Z. Mol. Pharmacol. (2005) [Pubmed]
  19. Inhibiting effects of enflurane and isoflurane anesthesia on measles virus replication: comparison with halothane. Knight, P.R., Nahrwold, M.L., Bedows, E. Antimicrob. Agents Chemother. (1981) [Pubmed]
  20. Impact of animal handling on the results of 18F-FDG PET studies in mice. Fueger, B.J., Czernin, J., Hildebrandt, I., Tran, C., Halpern, B.S., Stout, D., Phelps, M.E., Weber, W.A. J. Nucl. Med. (2006) [Pubmed]
  21. Myocardial stiffness derived from end-systolic wall stress and logarithm of reciprocal of wall thickness. Contractility index independent of ventricular size. Nakano, K., Sugawara, M., Ishihara, K., Kanazawa, S., Corin, W.J., Denslow, S., Biederman, R.W., Carabello, B.A. Circulation (1990) [Pubmed]
  22. Isoflurane attenuates cAMP-mediated vasodilation in rat microvessels. Park, K.W., Dai, H.B., Lowenstein, E., Darvish, A., Sellke, F.W. Circulation (1995) [Pubmed]
  23. Inhibition of translation initiation by volatile anesthetics involves nutrient-sensitive GCN-independent and -dependent processes in yeast. Palmer, L.K., Shoemaker, J.L., Baptiste, B.A., Wolfe, D., Keil, R.L. Mol. Biol. Cell (2005) [Pubmed]
  24. Spatial specificity of cerebral blood volume-weighted fMRI responses at columnar resolution. Zhao, F., Wang, P., Hendrich, K., Kim, S.G. Neuroimage (2005) [Pubmed]
  25. Signal changes in the spinal cord of the rat after injection of formalin into the hindpaw: characterization using functional magnetic resonance imaging. Pórszász, R., Beckmann, N., Bruttel, K., Urban, L., Rudin, M. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  26. Halothane blocks low-voltage-activated calcium current in rat sensory neurons. Takenoshita, M., Steinbach, J.H. J. Neurosci. (1991) [Pubmed]
  27. Critical Role of Serine 465 in Isoflurane-induced Increase of Cell-surface Redistribution and Activity of Glutamate Transporter Type 3. Huang, Y., Feng, X., Sando, J.J., Zuo, Z. J. Biol. Chem. (2006) [Pubmed]
  28. Phenylephrine-induced hypertension reduces ischemia following middle cerebral artery occlusion in rats. Drummond, J.C., Oh, Y.S., Cole, D.J., Shapiro, H.M. Stroke (1989) [Pubmed]
  29. Alpha 1 subunit-containing GABA type A receptors in forebrain contribute to the effect of inhaled anesthetics on conditioned fear. Sonner, J.M., Cascio, M., Xing, Y., Fanselow, M.S., Kralic, J.E., Morrow, A.L., Korpi, E.R., Hardy, S., Sloat, B., Eger, E.I., Homanics, G.E. Mol. Pharmacol. (2005) [Pubmed]
  30. Inorganic fluoride. Divergent effects on human proximal tubular cell viability. Zager, R.A., Iwata, M. Am. J. Pathol. (1997) [Pubmed]
  31. BOLD signal increase preceeds EEG spike activity--a dynamic penicillin induced focal epilepsy in deep anesthesia. Mäkiranta, M., Ruohonen, J., Suominen, K., Niinimäki, J., Sonkajärvi, E., Kiviniemi, V., Seppänen, T., Alahuhta, S., Jäntti, V., Tervonen, O. Neuroimage (2005) [Pubmed]
  32. Cerebral glucose metabolism, CSF 5-HIAA levels, and aggressive behavior in rhesus monkeys. Doudet, D., Hommer, D., Higley, J.D., Andreason, P.J., Moneman, R., Suomi, S.J., Linnoila, M. The American journal of psychiatry. (1995) [Pubmed]
  33. Inhalational anesthetic actions on voltage-gated ion currents of bovine adrenal chromaffin cells. Pancrazio, J.J., Park, W.K., Lynch, C. Mol. Pharmacol. (1993) [Pubmed]
  34. Ubiquitin metabolism affects cellular response to volatile anesthetics in yeast. Wolfe, D., Reiner, T., Keeley, J.L., Pizzini, M., Keil, R.L. Mol. Cell. Biol. (1999) [Pubmed]
  35. Goalpha regulates volatile anesthetic action in Caenorhabditis elegans. van Swinderen, B., Metz, L.B., Shebester, L.D., Mendel, J.E., Sternberg, P.W., Crowder, C.M. Genetics (2001) [Pubmed]
  36. Isoflurane-induced cerebral hyperemia in neuronal nitric oxide synthase gene deficient mice. Okamoto, H., Meng, W., Ma, J., Ayata, C., Roman, R.J., Bosnjak, Z.J., Kampine, J.P., Huang, P.L., Moskowitz, M.A., Hudetz, A.G. Anesthesiology (1997) [Pubmed]
  37. No effect of coronary perfusion on regional myocardial function within the autoregulatory range in pigs. Evidence against the Gregg phenomenon. Schulz, R., Guth, B.D., Heusch, G. Circulation (1991) [Pubmed]
  38. Selecting anesthetic agents for human safety and animal recovery surgery. Stimpfel, T.M., Gershey, E.L. FASEB J. (1991) [Pubmed]
  39. Improved spatial localization of post-stimulus BOLD undershoot relative to positive BOLD. Zhao, F., Jin, T., Wang, P., Kim, S.G. Neuroimage (2007) [Pubmed]
 
WikiGenes - Universities