The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Homocysteine down-regulates cellular glutathione peroxidase (GPx1) by decreasing translation.

Hyperhomocysteinemia contributes to vascular dysfunction and an increase in the risk of cardiovascular disease. An elevated level of homocysteine in vivo and in cell culture systems results in a decrease in the activity of cellular glutathione peroxidase (GPx1), an intracellular antioxidant enzyme that reduces hydrogen peroxide and lipid peroxides. In this study, we show that homocysteine interferes with GPx1 protein expression without affecting transcript levels. Expression of the selenocysteine (SEC)-containing GPx1 protein requires special translational cofactors to "read-through" a UGA-stop codon that specifies SEC incorporation at the active site of the enzyme. These factors include a selenocysteine incorporation sequence (SECIS) in the 3'-untranslated region of the GPx1 mRNA and cofactors involved in the biosynthesis and translational insertion of SEC. To monitor SEC incorporation, we used a reporter gene system that has a UGA codon within the protein-coding region of the luciferase mRNA. Addition of either the GPx1 or GPx3 SECIS element in the 3'-untranslated region of the luciferase gene stimulated read-through by 6-11-fold in selenium-replete cells; absence of selenium prevented translation. To alter cellular homocysteine production, we used methionine in the presence of aminopterin, a folate antagonist, co-administered with hypoxanthine and thymidine (HAT/Met). This treatment increased homocysteine levels in the media by 30% (p < 0.01) and decreased GPx1 enzyme activity by 45% (p = 0.0028). HAT/Met treatment decreased selenium-mediated read-through significantly (p < 0.001) in luciferase constructs containing the GPx1 or GPx3 SECIS element; most importantly, the suppression of selenium-dependent read-through was similar whether an SV40 promoter or the GPx1 promoter was used to drive transcription of the SECIS-containing constructs. Furthermore, HAT/Met had no effect on steady-state GPx1 mRNA levels but decreased GPx1 protein levels, suggesting that this effect is not transcriptionally mediated. These data support the conclusion that homocysteine decreases GPx1 activity by altering the translational mechanism essential for the synthesis of this selenocysteine-containing protein.[1]

References

 
WikiGenes - Universities