Rate-limiting biotransformation of triamterene is mediated by CYP1A2.
OBJECTIVE: Triamterene (TA), a potassium-sparing diuretic, is extensively metabolized by hydroxylation in 4'-position and subsequent conjugation by cytosolic sulfotransferases. To identify the cytochrome P450 enzyme(s) catalyzing hydroxylation of triamterene (the rate-limiting step in the formation of the sulfate ester ( STA)), in vitro incubation studies were performed with human liver microsomes. METHODS: Initial rates of TA hydroxylation (0 - 300 microM) were determined during a ten-minute-incubation period with liver microsomes of two donors. The role of individual CYP enzymes was determined by pre-incubation with selective inhibitors/alternative substrates. Vice versa, the effect of TA (0 - 500 microM) on 3-demethylation of caffeine (0 - 1,000 microM) was assessed. Metabolite concentrations were estimated by reversed-phase HPLC methods. RESULTS: TA Km values without inhibitors were 60 and 142 microM, Vmax was 177 and 220 pmol/min/mg protein, respectively. Mean inhibitor induced changes of 4'-hydroxy-TA formation were as follows: Furafylline 25 microM (CYP1A2), complete inhibition (-100%); omeprazole 250 microM (CYP1A2 inhibitor/ CYP2C 19 substrate), -30%; coumarin 25 microM (CYP2A6), -11%; quinidine 25 microM (CYP2D6), -9%; ketoconazole 25 microM ( CYP3A), -18%; and erythromycin 250 microM ( CYP3A), -8%. In the reverse inhibition studies, TA competitively inhibited caffeine 3-demethylation with Ki values of 65 and 111 microM, respectively. CONCLUSION: 4'-hydroxylation of TA in humans appears to be mediated exclusively by CYP1A2. Inhibition or induction of CYP1A2 will change the time course of both TA and its active phase-II metabolite. The net pharmacodynamic effect of such changes is difficult to predict and needs to be evaluated in clinical studies.[1]References
- Rate-limiting biotransformation of triamterene is mediated by CYP1A2. Fuhr, U., Kober, S., Zaigler, M., Mutschler, E., Spahn-Langguth, H. International journal of clinical pharmacology and therapeutics. (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg