The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Inhibition of glucagon secretion.

This chapter describes a physiological and profound effect of amylin to inhibit meal-related glucagon secretion. Glucagon is processed from a large precursor, proglucagon, in a tissue-specific manner in pancreatic alpha-cells. In addition to amino acid nutrient stimuli, glucagon is also secreted in response to stressful stimuli, such as hypoglycemia and hypovolemia. Glucagon primarily acts on liver to initiate glycogenolysis and gluconeogenesis, resulting in a rapid increase in endogenous production of glucose. With longer stimulation, glucagon action at the liver results in a glucose-sparing activation of free fatty acid oxidation and production of ketones. During hypoglycemia, glucagon secretion is clearly a protective feed-back, defending the organism against damaging effects of low glucose in brain and nerves (neuroglycopenia). Amino acid-stimulated glucagon secretion during meals has a different purpose: amino acids stimulate insulin secretion, which mobilizes amino acid transporters and effects their storage in peripheral tissues. At the same time, insulin obligatorily recruits GLUT4 glucose transporters in muscle and fat. The hypoglycemic potential of such GLUT4 mobilization is averted only by the simultaneous liberation of endogenous glucose in response to feedforward (anticipatory) glucagon secretion. The effect of amylin and its agonists to inhibit amino acid- stimulated glucagon secretion is both potent (EC50 = 18 pM) and profound (approximately 70% inhibition). This glucagonostatic action appears to be extrinsic to the pancreatic islet, occurring in intact animals and in patients, but not in isolated islets or isolated perfused pancreas preparations. On the other hand, the effect of hypoglycemia to stimulate glucagon secretion, which is intrinsic to the islet and occurs in isolated preparations, is not affected by amylin or its agonists. The physiological interpretation of these actions fits with the general concept, illustrated in Fig. 1, that amylin and insulin secreted in response to meals shut down endogenous production as a source of glucose, in favor of that derived from the meal. Amylin and insulin secreted in response to nutrients already absorbed act as a feedback switch for glucose sourcing. The insulinotropic (incretin) gut peptides, GLP-1 and GIP, secreted in response to yet-to-be-absorbed intraluminal nutrients, amplify beta-cell secretion and thereby activate the glucose sourcing switch in a feedforward manner. Hypoglycemia-stimulated glucagon secretion and nutrient (amino acid)-stimulated glucagon secretion are two clearly different processes, differently affected by amylin. The balance of glucose fluxes is disturbed in diabetic states, partly as a result of inappropriate glucagon secretion. Although glucose production due to glucagon secreted in response to hypoglycemia is normal or even reduced in diabetic patients, the secretion of glucagon (and production of endogenous glucose) in response to protein meals is typically exaggerated. Absence of appropriate beta-cell suppression of alpha-cell secretion has been invoked as a mechanism that explains exaggerated glucagon responses, especially prevalent in patients with deficient beta-cell secretion (type 1 diabetes and insulinopenic type 2 diabetes). A proposed benefit of insulin replacement therapy is the reduction of absolute or relative hyperglucagonemia. High glucagon is said to be necessary for ketosis in severe forms of diabetes. A further benefit of reversing hyperglucagonemia is reduction of the excessive endogenous glucose production that contributes to fasting and postprandial hyperglycemia in diabetes. The idea that amylin is a part of the beta-cell drive that normally limits glucagon secretion after meals fits with the observation that glucagon secretion is exaggerated in amylin-deficient states (diabetes characterized by beta-cell failure). This proposal is further supported by the observation that postprandial glucagon suppression is restored following amylin replacement therapy in such states. These observations argue for a therapeutic case for amylin replacement in patients in whom excess glucagon action contributes to fasting and postprandial hyperglycemia and ketosis. The selectivity of amylin's glucagonostatic effect (wherein it is restricted to meal-related glucagon secretion, while preserving glucagon secretion and glucagon action during hypoglycemia) may confer additional benefits; the patient population amenable to amylin replacement therapy is likely to also be receiving insulin replacement therapy, and is thereby susceptible to insulin-induced hypoglycemia. Most explorations of the biology of amylin have used the endogenous hormone in the cognate species (typically rat amylin in rat studies). Clinical studies have typically employed the amylinomimetic agent pramlintide. Studies of amylinomimetic effects on glucagon secretion include effects of rat amylin in anesthetized non-diabetic rats (Jodka et al., 2000; Parkes et al., 1999; Young et al., 1995), effects of rat amylin in isolated perfused rat pancreas (Silvestre et al., 1999), effects of pramlintide in anesthetized non-diabetic rats (Gedulin et al., 1997b,c,d, 1998), effects of pramlintide in patients with type l diabetes (Fineman et al., 1997a,b,c,d, 1998a; Holst, 1997; Nyholm et al., 1996, 1997a,b,c; Orskov et al., 1999; Thompson and Kolterman, 1997), and effects in patients with type 2 diabetes (Fineman et al., 1998b). In addition, effects of amylin antagonists have been observed in isolated preparations (Silvestre et al., 1996), and effects of antagonists or neutralizing antibody have been determined in whole-animal preparations (Gedulin et al., 1997a,e,f).[1]


  1. Inhibition of glucagon secretion. Young, A. Adv. Pharmacol. (2005) [Pubmed]
WikiGenes - Universities