The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Hypovolemia

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Hypovolemia

 

Psychiatry related information on Hypovolemia

 

High impact information on Hypovolemia

 

Chemical compound and disease context of Hypovolemia

  • In edematous and hypovolemic patients, plasma hormonal responses (increases in plasma renin activity and aldosterone and norepinephrine levels) were compatible with baroreceptor-mediated release of vasopressin [12].
  • Drinking responses to hypovolemia induced by s.c. injection of colloid (polyethylene glycol) were unchanged in 6- to 15-m.o. rats, then declined precipitously in 18- to 24-m.o. rats [4].
  • When salt appetite was stimulated by the physiological stimulus of polyethylene glycol-induced hypovolemia, hypertonic mannitol similarly inhibited salt ingestion in control animals but not in rAOT-treated rats, whereas hypertonic NaCl inhibited subsequent salt ingestion in both groups [13].
  • Congestion and hypovolemia are reversible and can be largely prevented by administration of the protective compound N-acetylcysteine (1,200 mg per kg p.o.) 3 hr after acetaminophen [14].
  • Much higher levels of ELAM-1 expression and plasma granulocyte-elastase titer in septic shock, as contrasted with traumatic/hypovolemic shock, are consistent with the higher levels of circulating tumor necrosis factor, other cytokines, and LPS in sepsis [15].
 

Biological context of Hypovolemia

 

Anatomical context of Hypovolemia

 

Gene context of Hypovolemia

  • Although increased endothelin-3 was associated with features suggesting a reduced effective volemia, it is likely that other mechanisms than hypovolemia were mainly responsible for high plasma endothelin levels [26].
  • Hypovolemia produced by retro-orbital bleeding also significantly elevated corticosterone in CRH KO mice [27].
  • This suggests that AVP has contrasting effects in the inner ear and kidney, which may be physiologically useful for maintaining endolymphatic pressure during severe hypovolemia [28].
  • These results indicate that the secretion of PRL is not generally affected by chronic mild hypernatremic hypovolemia in the patients with idiopathic DI [29].
  • Together, these changes suggest that the late stimulatory effect of ANP on ACTH/cortisol release reflects an effect secondary to its hypovolemic actions [30].
 

Analytical, diagnostic and therapeutic context of Hypovolemia

References

  1. The renin-angiotensin system in nonmammalian vertebrates. Wilson, J.X. Endocr. Rev. (1984) [Pubmed]
  2. Treatment of circulatory shock with dopamine. Studies on survival. Ruiz, C.E., Weil, M.H., Carlson, R.W. JAMA (1979) [Pubmed]
  3. Impaired hormonal responses to hypoglycemia in spontaneously diabetic and recurrently hypoglycemic rats. Reversibility and stimulus specificity of the deficits. Powell, A.M., Sherwin, R.S., Shulman, G.I. J. Clin. Invest. (1993) [Pubmed]
  4. Differential effects of aging on fluid intake in response to hypovolemia, hypertonicity, and hormonal stimuli in Munich Wistar rats. McKinley, M.J., Denton, D.A., Thomas, C.J., Woods, R.L., Mathai, M.L. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  5. A mouse model for the renal salt-wasting syndrome pseudohypoaldosteronism. Hummler, E., Barker, P., Talbot, C., Wang, Q., Verdumo, C., Grubb, B., Gatzy, J., Burnier, M., Horisberger, J.D., Beermann, F., Boucher, R., Rossier, B.C. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  6. Differential regulation of angiotensinogen and AT1A receptor mRNA within the rat subfornical organ during dehydration. Barth, S.W., Gerstberger, R. Brain Res. Mol. Brain Res. (1999) [Pubmed]
  7. Preoptic-hypothalamic periventricular lesions: thirst deficits and hypernatremia. Buggy, J., Jonhson, A.K. Am. J. Physiol. (1977) [Pubmed]
  8. Baroreceptor regulation of vasopressin and renin secretion: low-pressure versus high-pressure receptors. Thrasher, T.N. Frontiers in neuroendocrinology. (1994) [Pubmed]
  9. Vascular endothelium is critically involved in the hypotensive and hypovolemic actions of atrial natriuretic peptide. Sabrane, K., Kruse, M.N., Fabritz, L., Zetsche, B., Mitko, D., Skryabin, B.V., Zwiener, M., Baba, H.A., Yanagisawa, M., Kuhn, M. J. Clin. Invest. (2005) [Pubmed]
  10. Potassium depletion downregulates chloride-absorbing transporters in rat kidney. Amlal, H., Wang, Z., Soleimani, M. J. Clin. Invest. (1998) [Pubmed]
  11. Opioid antagonist diprenorphine microinjected into parabrachial nucleus selectively inhibits vasopressin response to hypovolemic stimuli in the rat. Iwasaki, Y., Gaskill, M.B., Fu, R., Saper, C.B., Robertson, G.L. J. Clin. Invest. (1993) [Pubmed]
  12. Hyponatremia: a prospective analysis of its epidemiology and the pathogenetic role of vasopressin. Anderson, R.J., Chung, H.M., Kluge, R., Schrier, R.W. Ann. Intern. Med. (1985) [Pubmed]
  13. Central oxytocin inhibition of salt appetite in rats: evidence for differential sensing of plasma sodium and osmolality. Blackburn, R.E., Samson, W.K., Fulton, R.J., Stricker, E.M., Verbalis, J.G. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  14. Acetaminophen-induced hepatotoxic congestion in mice. Walker, R.M., Racz, W.J., McElligott, T.F. Hepatology (1985) [Pubmed]
  15. Expression of endothelial leukocyte adhesion molecule-1 in septic but not traumatic/hypovolemic shock in the baboon. Redl, H., Dinges, H.P., Buurman, W.A., van der Linden, C.J., Pober, J.S., Cotran, R.S., Schlag, G. Am. J. Pathol. (1991) [Pubmed]
  16. Nephrotic syndrome: vasoconstriction and hypervolemic types indicated by renin-sodium profiling. Meltzer, J.I., Keim, H.J., Laragh, J.H., Sealey, J.E., Jan, K.M., Chien, S. Ann. Intern. Med. (1979) [Pubmed]
  17. Role of arginine vasopressin in regulation of systemic arterial pressure. Rossi, N.F., Schrier, R.W. Annu. Rev. Med. (1986) [Pubmed]
  18. The influence of diet on response to hemorrhagic shock. Drucker, W.R., Howard, P.L., McCoy, S. Ann. Surg. (1975) [Pubmed]
  19. Neurogenic disorders of osmoregulation. Robertson, G.L., Aycinena, P., Zerbe, R.L. Am. J. Med. (1982) [Pubmed]
  20. Influence of hypovolemia on the pharmacokinetics and the electroencephalographic effect of propofol in the rat. De Paepe, P., Belpaire, F.M., Rosseel, M.T., Van Hoey, G., Boon, P.A., Buylaert, W.A. Anesthesiology (2000) [Pubmed]
  21. Centrally administered neuropeptide FF inhibits arginine vasopressin release in conscious rats. Arima, H., Murase, T., Kondo, K., Iwasaki, Y., Oiso, Y. Endocrinology (1996) [Pubmed]
  22. Influence of hypovolemia on the pharmacokinetics and the electroencephalographic effect of etomidate in the rat. De Paepe, P., Belpaire, F.M., Van Hoey, G., Boon, P.A., Buylaert, W.A. J. Pharmacol. Exp. Ther. (1999) [Pubmed]
  23. Propofol-induced increase in vascular capacitance is due to inhibition of sympathetic vasoconstrictive activity. Hoka, S., Yamaura, K., Takenaka, T., Takahashi, S. Anesthesiology (1998) [Pubmed]
  24. Dopamine-induced neurogenic vaso-dilatation in the intact hindleg of the dog. Bogaert, M.G., Schaepdryver, A.F., Willems, J.L. Br. J. Pharmacol. (1977) [Pubmed]
  25. Physiological regulation of peptide messenger RNA colocalization in rat hypothalamic paraventricular medial parvicellular neurons. Watts, A.G., Sanchez-Watts, G. J. Comp. Neurol. (1995) [Pubmed]
  26. Plasma endothelin-1 and -3 in cirrhosis: relationship with systemic hemodynamics, renal function and neurohumoral systems. Bernardi, M., Gulberg, V., Colantoni, A., Trevisani, F., Gasbarrini, A., Gerbes, A.L. J. Hepatol. (1996) [Pubmed]
  27. CRH deficiency impairs but does not block pituitary-adrenal responses to diverse stressors. Jacobson, L., Muglia, L.J., Weninger, S.C., Pac¿ak, K., Majzoub, J.A. Neuroendocrinology (2000) [Pubmed]
  28. The effect of anti-diuretic hormone on the endolymphatic sac of the inner ear. Kumagami, H., Loewenheim, H., Beitz, E., Wild, K., Schwartz, H., Yamashita, K., Schultz, J., Paysan, J., Zenner, H.P., Ruppersberg, J.P. Pflugers Arch. (1998) [Pubmed]
  29. Prolactin secretion in patients with idiopathic diabetes insipidus. Oiso, Y., Murase, T., Kondo, K., Iwasaki, Y., Otake, K., Ito, M., Takatsuki, K. Endocrinol. Jpn. (1991) [Pubmed]
  30. Influence of exogenous atrial natriuretic peptide on the pituitary-adrenal response to corticotropin-releasing hormone and vasopressin in healthy men. Bierwolf, C., Burgemeister, A., Lüthke, K., Born, J., Fehm, H.L. J. Clin. Endocrinol. Metab. (1998) [Pubmed]
  31. The influence of volume depletion and central hypovolemia on the plasma concentration of parathyroid hormone in dialysis patients. Mallamaci, F., Zoccali, C., Messineo, L., Parlongo, S., Postorino, M. J. Am. Soc. Nephrol. (1997) [Pubmed]
  32. Simultaneous cerebrovascular and cardiovascular responses during presyncope. Bondar, R.L., Kassam, M.S., Stein, F., Dunphy, P.T., Fortney, S., Riedesel, M.L. Stroke (1995) [Pubmed]
  33. Syndrome of cerebral spinal fluid hypovolemia: clinical and imaging features and outcome. Chung, S.J., Kim, J.S., Lee, M.C. Neurology (2000) [Pubmed]
  34. Lack of effect of experimental hypovolemia on imipenem muscle distribution in rats assessed by microdialysis. Marchand, S., Dahyot, C., Lamarche, I., Plan, E., Mimoz, O., Couet, W. Antimicrob. Agents Chemother. (2005) [Pubmed]
 
WikiGenes - Universities