The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Ca2+ -linked upregulation and mitochondrial production of nitric oxide in the mouse preimplantation embryo.

Previous studies have demonstrated a role for the signalling agent nitric oxide in regulating preimplantation embryo development. We have now investigated the biochemical mode of action of nitric oxide in mouse embryos in terms of mitochondrial function and Ca2+ signalling. DETA-NONOate, a nitric oxide donor, decreased day 4 blastocyst cell number and oxygen consumption, consistent with a role for nitric oxide in the inhibition mitochondrial cytochrome c oxidase. Using live cell imaging and the nitric-oxide-sensitive probe DAF-FM diacetate, nitric oxide was detected at all stages of preimplantation development and FRET analysis revealed a proportion of the nitric oxide to be colocalised with mitochondria. This suggests that mitochondria of preimplantation embryos produce nitric oxide to regulate their own oxygen consumption. Inhibiting or uncoupling the electron transport chain induced an increase in nitric oxide and [Ca2+]i as well as disruption of Ca2+ deposits at the plasma membrane, suggesting that mitochondrial disruption can quickly compromise cellular function through Ca2+ -stimulated nitric oxide production. A link between antimycin-A-induced apoptosis and nitric oxide signalling is proposed.[1]

References

 
WikiGenes - Universities