The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

DETA-NONOate     N-(bis(2-aminoethyl)amino)-N- hydroxy...

Synonyms: noc-18, DETA NONOate, AEED/NO, NOC 18, AG-K-60948, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of DETA NONOate

 

High impact information on DETA NONOate

 

Chemical compound and disease context of DETA NONOate

 

Biological context of DETA NONOate

  • FTI (25 microM) potentiated the action of lower concentrations of DETA-NONOate (25-100 microM) by inducing apoptosis in these cells within 24 h by increasing cytochrome c release and caspase-9 and -3 activation [10].
  • The NO-releasing agent Deta-NONOate (ethanamine-2,2'-(hydroxynitrosohydrazone)bis-) had no effect on a chloramphenicol acetyltransferase (CAT) reporter gene under control of the fos promoter in BHK cells transfected with an empty vector or in cells transfected with a G-kinase Ibeta expression vector [11].
  • The demonstration that pretreatment of glomeruli with the tyrosine kinase inhibitor, genistein, could largely prevent the effect of SNAP and DETA-NONOate confirmed the crucial role of tyrosine phosphorylation in the NO-induced increase of P(a) [12].
  • DETA-NONOate, a nitric oxide donor, decreased day 4 blastocyst cell number and oxygen consumption, consistent with a role for nitric oxide in the inhibition mitochondrial cytochrome c oxidase [13].
  • A specific K(Ca) channel inhibitor, iberiotoxin, decreased deta nonoate-induced vasodilation but to a lesser extent than ODQ [14].
 

Anatomical context of DETA NONOate

 

Associations of DETA NONOate with other chemical compounds

 

Gene context of DETA NONOate

  • The iNOS selective inhibitor L-NIL also suppressed TNF-alpha-induced osteoclast survival, whereas low concentrations of NO releaser NOC-18 were sufficient to promote osteoclast survival [22].
  • However, the NO donor NOC-18 (500 microM) increased HO-1 expression twofold and HO activity 25-fold, whereas cytomix treatment increased HO activity eightfold [23].
  • By means of a competitive nitric oxide synthase (NOS) inhibitor: L-nitro arginine methyl ester (L-NAME) and a slow NO releasing: diethyl-aminetriamine (DETA-NONOate), we demonstrated that NO system could be the intermediary in the ET-1 diminishing P4 production [24].
  • Costimulation with interferon-gamma (IFN-gamma) reversed the NOC-18-mediated suppression of IL-1alpha protein concentration into an almost fivefold increase in RAW 264.7 cells [25].
  • Conversely, after addition of the NO-generating compound NOC-18, IL-1beta and IL-1alpha concentrations in supernatants were dose-dependently reduced [25].
 

Analytical, diagnostic and therapeutic context of DETA NONOate

  • Similarly, microinjection of NOC 18 (10 nmol/50 nL) reduced MAP in both strains, and the depressor response was also significantly greater in SHR than in WKY (-38+/-7 versus -22+/-3 mm Hg, respectively; n=8, P<.05) [26].
  • The protection exerted by increased Nrf2 activity was overcome by adding the NO donor DETA-NONOate to the co-cultures or by inhibiting GSH synthesis and release from astrocytes [27].
  • 2. Exposure to S-nitrosothiols, DETA-NONOate and NO itself inhibited ongoing DNA synthesis and S phase progression in a concentration-dependent manner, as measured by thymidine incorporation and flow cytometry [28].
  • In the sham-surgery control groups, intrathecal injection of 10 or 100 microg of NOC-18 did not produce any change in withdrawal latencies [8].
  • Northern blot analysis revealed that the level of mRNA for osteocalcin, one of the osteoblastic differentiation markers, was enhanced in the ROB cells, which was continuously treated by NOC-18 [29].

References

  1. Nitric oxide-induced cytostasis and cell cycle arrest of a human breast cancer cell line (MDA-MB-231): potential role of cyclin D1. Pervin, S., Singh, R., Chaudhuri, G. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  2. Intracerebroventricular administration of a nitric oxide-releasing compound, NOC-18, produces thermal hyperalgesia in rats. Shibuta, S., Mashimoto, T., Ohara, A., Zhang, P., Yoshiya, I. Neurosci. Lett. (1995) [Pubmed]
  3. Upregulation of neurogenesis and reduction in functional deficits following administration of DEtA/NONOate, a nitric oxide donor, after traumatic brain injury in rats. Lu, D., Mahmood, A., Zhang, R., Copp, M. J. Neurosurg. (2003) [Pubmed]
  4. Ventricular but not atrial electro-mechanical delay of the embryonic heart is altered by anoxia-reoxygenation and improved by nitric oxide. Maury, P., Sarre, A., Terrand, J., Rosa, A., Kucera, P., Kappenberger, L., Raddatz, E. Mol. Cell. Biochem. (2004) [Pubmed]
  5. Endothelium-derived hyperpolarizing factor-mediated renal vasodilatory response is impaired during acute and chronic hyperhomocysteinemia. De Vriese, A.S., Blom, H.J., Heil, S.G., Mortier, S., Kluijtmans, L.A., Van de Voorde, J., Lameire, N.H. Circulation (2004) [Pubmed]
  6. Nitric-oxide-induced Bax integration into the mitochondrial membrane commits MDA-MB-468 cells to apoptosis: essential role of Akt. Pervin, S., Singh, R., Chaudhuri, G. Cancer Res. (2003) [Pubmed]
  7. Role of iron in tumor cell protection from the pro-apoptotic effect of nitric oxide. Feger, F., Ferry-Dumazet, H., Mamani Matsuda, M., Bordenave, J., Dupouy, M., Nussler, A.K., Arock, M., Devevey, L., Nafziger, J., Guillosson, J.J., Reiffers, J., Mossalayi, M.D. Cancer Res. (2001) [Pubmed]
  8. Rapid development of nitric oxide-induced hyperalgesia depends on an alternate to the cGMP-mediated pathway in the rat neuropathic pain model. Inoue, T., Mashimo, T., Shibata, M., Shibuta, S., Yoshiya, I. Brain Res. (1998) [Pubmed]
  9. Nitric oxide and collagen expression in allergic upper-airway disease. Tewfik, M.A., Bernardes, J.F., Shan, J., Robinson, M., Frenkiel, S., Eidelman, D.H. American journal of rhinology. (2003) [Pubmed]
  10. Potentiation of nitric oxide-induced apoptosis of MDA-MB-468 cells by farnesyltransferase inhibitor: implications in breast cancer. Pervin, S., Singh, R., Gau, C.L., Edamatsu, H., Tamanoi, F., Chaudhuri, G. Cancer Res. (2001) [Pubmed]
  11. Nitric oxide regulation of gene transcription via soluble guanylate cyclase and type I cGMP-dependent protein kinase. Idriss, S.D., Gudi, T., Casteel, D.E., Kharitonov, V.G., Pilz, R.B., Boss, G.R. J. Biol. Chem. (1999) [Pubmed]
  12. Nitric oxide increases albumin permeability of isolated rat glomeruli via a phosphorylation-dependent mechanism. Li, B., Yao, J., Morioka, T., Oite, T. J. Am. Soc. Nephrol. (2001) [Pubmed]
  13. Ca2+ -linked upregulation and mitochondrial production of nitric oxide in the mouse preimplantation embryo. Manser, R.C., Houghton, F.D. J. Cell. Sci. (2006) [Pubmed]
  14. Effect of selective inhibition of soluble guanylyl cyclase on the K(Ca) channel activity in coronary artery smooth muscle. Li, P.L., Jin, M.W., Campbell, W.B. Hypertension (1998) [Pubmed]
  15. Selective guanylyl cyclase inhibitor reverses nitric oxide-induced vasorelaxation. Olson, L.J., Knych, E.T., Herzig, T.C., Drewett, J.G. Hypertension (1997) [Pubmed]
  16. Normoxic stabilization of hypoxia-inducible factor-1 expression and activity: redox-dependent effect of nitrogen oxides. Palmer, L.A., Gaston, B., Johns, R.A. Mol. Pharmacol. (2000) [Pubmed]
  17. Modulation of the K(+) channels encoded by the human ether-a-gogo-related gene-1 (hERG1) by nitric oxide. Taglialatela, M., Pannaccione, A., Iossa, S., Castaldo, P., Annunziato, L. Mol. Pharmacol. (1999) [Pubmed]
  18. Persistent S-nitrosation of complex I and other mitochondrial membrane proteins by S-nitrosothiols but not nitric oxide or peroxynitrite: implications for the interaction of nitric oxide with mitochondria. Dahm, C.C., Moore, K., Murphy, M.P. J. Biol. Chem. (2006) [Pubmed]
  19. Nitric-oxide-induced necrosis and apoptosis in PC12 cells mediated by mitochondria. Bal-Price, A., Brown, G.C. J. Neurochem. (2000) [Pubmed]
  20. N-cadherin mediates nitric oxide-induced neurogenesis in young and retired breeder neurospheres. Chen, J., Zacharek, A., Li, Y., Li, A., Wang, L., Katakowski, M., Roberts, C., Lu, M., Chopp, M. Neuroscience (2006) [Pubmed]
  21. Nitric oxide donor induces temporal and dose-dependent reduction of gene expression in human endothelial cells. Braam, B., de Roos, R., Dijk, A., Boer, P., Post, J.A., Kemmeren, P.P., Holstege, F.C., Bluysen, H.A., Koomans, H.A. Am. J. Physiol. Heart Circ. Physiol. (2004) [Pubmed]
  22. Involvement of iNOS-dependent NO production in the stimulation of osteoclast survival by TNF-alpha. Lee, S.K., Huang, H., Lee, S.W., Kim, K.H., Kim, K.K., Kim, H.M., Lee, Z.H., Kim, H.H. Exp. Cell Res. (2004) [Pubmed]
  23. Expression of heme oxygenase in human airway epithelial cells. Donnelly, L.E., Barnes, P.J. Am. J. Respir. Cell Mol. Biol. (2001) [Pubmed]
  24. Relationship between endothelin 1 and nitric oxide system in the corpus luteum regression. Tognetti, T., Estevez, A., Luchetti, C.G., Sander, V., Franchi, A.M., Motta, A.B. Prostaglandins Leukot. Essent. Fatty Acids (2003) [Pubmed]
  25. Interleukin-1 production by mouse macrophages is regulated in a feedback fashion by nitric oxide. Obermeier, F., Gross, V., Schölmerich, J., Falk, W. J. Leukoc. Biol. (1999) [Pubmed]
  26. Enhanced depressor response to nitric oxide in the rostral ventrolateral medulla of spontaneously hypertensive rats. Kagiyama, S., Tsuchihashi, T., Abe, I., Fujishima, M. Hypertension (1998) [Pubmed]
  27. Increased glutathione biosynthesis by Nrf2 activation in astrocytes prevents p75-dependent motor neuron apoptosis. Vargas, M.R., Pehar, M., Cassina, P., Beckman, J.S., Barbeito, L. J. Neurochem. (2006) [Pubmed]
  28. A redox-based mechanism for nitric oxide-induced inhibition of DNA synthesis in human vascular smooth muscle cells. Bundy, R.E., Marczin, N., Chester, A.H., Yacoub, M. Br. J. Pharmacol. (2000) [Pubmed]
  29. Effects of nitric oxide from exogenous nitric oxide donors on osteoblastic metabolism. Otsuka, E., Hirano, K., Matsushita, S., Inoue, A., Hirose, S., Yamaguchi, A., Hagiwara, H. Eur. J. Pharmacol. (1998) [Pubmed]
 
WikiGenes - Universities