The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Ammonia-specific Regulation of Gln3 Localization in Saccharomyces cerevisiae by Protein Kinase Npr1.

Events directly regulating Gln3 intracellular localization and nitrogen catabolite repression (NCR)-sensitive transcription in Saccharomyces cerevisiae are interconnected with many cellular processes that influence the utilization of environmental metabolites. Among them are intracellular trafficking of the permeases that transport nitrogenous compounds and their control by the Tor1,2 signal transduction pathway. Npr1 is a kinase that phosphorylates and thereby stabilizes NCR-sensitive permeases, e.g. Gap1 and Mep2. It is also a phosphoprotein for which phosphorylation and kinase activity are regulated by Tor1,2 via Tap42 and Sit4. Npr1 has been reported to negatively regulate nuclear localization of Gln3 in SD (ammonia)-grown cells. Thus we sought to distinguish whether Npr1: (i) functions directly as a component of NCR control; or (ii) influences Gln3 localization indirectly, possibly as a consequence of participating in protein trafficking. If Npr1 functions directly, then the ability of all good nitrogen sources to restrict Gln3 to the cytoplasm should be lost in an npr1Delta just as occurs when URE2 (encoding this well studied negative Gln3 regulator) is deleted. We show that nuclear localization of Gln3-Myc(13) in an npr1Delta occurred only with ammonia as the nitrogen source. Other good nitrogen sources, e.g. glutamine, serine, or asparagine, restricted Gln3-Myc(13) to the cytoplasm of both wild type and npr1Delta cells. In other words, the npr1Delta did not possess the uniform phenotype for all repressive nitrogen sources characteristic of ure2Delta. This suggests that the connection between Gln3 localization and Npr1 is indirect, arising from the influence of Npr1 on the ability of cells to utilize ammonia as a repressive nitrogen source.[1]

References

 
WikiGenes - Universities