The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Functional genomic analysis of commercial baker's yeast during initial stages of model dough-fermentation.

Gene expression profiles of baker's yeast during initial dough-fermentation were investigated using liquid fermentation (LF) media to obtain insights at the molecular level into rapid adaptation mechanisms of baker's yeast. Results showed that onset of fermentation caused drastic changes in gene expression profiles within 15 min. Genes involved in the tricarboxylic acid (TCA) cycle were down-regulated and genes involved in glycolysis were up-regulated, indicating a metabolic shift from respiration to fermentation. Genes involved in ethanol production (PDC genes and ADH1), in glycerol synthesis (GPD1 and HOR2), and in low-affinity hexose transporters (HXT1 and HXT3) were up-regulated at the beginning of model dough-fermentation. Among genes up-regulated at 15 min, several genes classified as transcription were down-regulated within 30 min. These down-regulated genes are involved in messenger RNA splicing and ribosomal protein biogenesis and in transcriptional regulator (SRB8, MIG1). In contrast, genes involved in amino acid metabolism and in vitamin metabolism, such as arginine biosynthesis, riboflavin biosynthesis, and thiamin biosynthesis, were subsequently up-regulated after 30 min. Interestingly, the genes involved in the unfolded protein response (UPR) pathway were also subsequently up-regulated. Our study presents the first overall description of the transcriptional response of baker's yeast during dough-fermentation, and will thus help clarify genomic responses to various stresses during commercial fermentation processes.[1]


  1. Functional genomic analysis of commercial baker's yeast during initial stages of model dough-fermentation. Tanaka, F., Ando, A., Nakamura, T., Takagi, H., Shima, J. Food Microbiol. (2006) [Pubmed]
WikiGenes - Universities