The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

CYP724B2 and CYP90B3 Function in the Early C-22 Hydroxylation Steps of Brassinosteroid Biosynthetic Pathway in Tomato.

We characterized a new cytochrome P450 monooxygenase (P450), CYP724B2, from tomato (Lycopersicon esculentum). CYP724B2 showed 42% and 62% amino acid sequence identity with Arabidopsis DWARF4/CYP90B1 and rice DWARF11/CYP724B1 respectively. Functional assay of CYP724B2 heterologously expressed in insect cells revealed that CYP724B2 catalyzes C-22 hydroxylation of campesterol, indicating that CYP724B2 is a C-22 hydroxylase. We also isolated a tomato CYP90B homolog (CYP90B3) and found that CYP90B3 is a C-22 hydroxylase as well. CYP724B2 and CYP90B3 showed substrate specificities similar to each other toward the biosynthetic intermediate compounds from campesterol to campestanol. Campesterol was the best substrate, and (24R)-ergost-4-en-3-one was also metabolized to the C-22 hydroxylated product to some extent. On the other hand, the P450s catalyzed C-22 hydroxylation of (24R)-5alpha-ergostan-3-one and campestanol at a trace level, indicating that the compounds after C-5alpha reduction are poor substrates of CYP724B2 and CYP90B3. In addition, cholesterol (C(27) sterol) and sitosterol (C(29) sterol) were also converted to C-22 hydroxylated products by the P450s. Furthermore, CYP724B2 and CYP90B3 genes were ubiquitously expressed, and their transcript levels were down-regulated by the exogenous application of brassinolide. These findings strongly suggest that CYP724B2 and CYP90B3 function in the early C-22 hydroxylation steps of brassinosteroid biosynthetic pathway in tomato.[1]

References

  1. CYP724B2 and CYP90B3 Function in the Early C-22 Hydroxylation Steps of Brassinosteroid Biosynthetic Pathway in Tomato. Ohnishi, T., Watanabe, B., Sakata, K., Mizutani, M. Biosci. Biotechnol. Biochem. (2006) [Pubmed]
 
WikiGenes - Universities