The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

CPD  -  cytochrome P450 90A1

Arabidopsis thaliana

Synonyms: CABBAGE 3, CBB3, CONSTITUTIVE PHOTOMORPHOGENIC DWARF, CYP90, CYP90A, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of CPD

 

High impact information on CPD

 

Chemical compound and disease context of CPD

 

Biological context of CPD

 

Anatomical context of CPD

  • Heterologous expression of CYP73A5, an Arabidopsis cytochrome P450 monooxygenase, in baculovirus-infected insect cells yields correctly configured P450 detectable by reduced CO spectral analysis in microsomes and cell lysates [13].
 

Associations of CPD with chemical compounds

  • Our results imply that the ROT3 protein is a member of a new class of cytochrome P-450 encoding putative steroid hydroxylases, which is required for the regulated polar elongation of cells in leaves of Arabidopsis [6].
  • Brassinosteroids (BRs) are biosynthesized from campesterol via several cytochrome P450 (P450)-catalyzed oxidative reactions [14].
  • The basis for the mutant phenotype is the enhanced expression of a cytochrome P450 (CYP72B1). bas1-D suppresses a phyB-null allele, but not a phyA-null mutation, and partially suppresses a cryptochrome-null mutation [15].
  • Selective interaction of triazole derivatives with DWF4, a cytochrome P450 monooxygenase of the brassinosteroid biosynthetic pathway, correlates with brassinosteroid deficiency in planta [16].
  • Repression of CPD transcription by brassinosteroids is sensitive to the protein synthesis inhibitor cycloheximide, indicating a requirement for de novo synthesis of a regulatory factor [17].
 

Other interactions of CPD

 

Analytical, diagnostic and therapeutic context of CPD

References

  1. The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22alpha-hydroxylation steps in brassinosteroid biosynthesis. Choe, S., Dilkes, B.P., Fujioka, S., Takatsuto, S., Sakurai, A., Feldmann, K.A. Plant Cell (1998) [Pubmed]
  2. CYP83b1 is the oxime-metabolizing enzyme in the glucosinolate pathway in Arabidopsis. Hansen, C.H., Du, L., Naur, P., Olsen, C.E., Axelsen, K.B., Hick, A.J., Pickett, J.A., Halkier, B.A. J. Biol. Chem. (2001) [Pubmed]
  3. CYP76C2, an Arabidopsis thaliana cytochrome P450 gene expressed during hypersensitive and developmental cell death. Godiard, L., Sauviac, L., Dalbin, N., Liaubet, L., Callard, D., Czernic, P., Marco, Y. FEBS Lett. (1998) [Pubmed]
  4. Light and brassinosteroid signals are integrated via a dark-induced small G protein in etiolated seedling growth. Kang, J.G., Yun, J., Kim, D.H., Chung, K.S., Fujioka, S., Kim, J.I., Dae, H.W., Yoshida, S., Takatsuto, S., Song, P.S., Park, C.M. Cell (2001) [Pubmed]
  5. Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Szekeres, M., Németh, K., Koncz-Kálmán, Z., Mathur, J., Kauschmann, A., Altmann, T., Rédei, G.P., Nagy, F., Schell, J., Koncz, C. Cell (1996) [Pubmed]
  6. The ROTUNDIFOLIA3 gene of Arabidopsis thaliana encodes a new member of the cytochrome P-450 family that is required for the regulated polar elongation of leaf cells. Kim, G.T., Tsukaya, H., Uchimiya, H. Genes Dev. (1998) [Pubmed]
  7. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8'-hydroxylases: key enzymes in ABA catabolism. Kushiro, T., Okamoto, M., Nakabayashi, K., Yamagishi, K., Kitamura, S., Asami, T., Hirai, N., Koshiba, T., Kamiya, Y., Nambara, E. EMBO J. (2004) [Pubmed]
  8. CYP79B1 from Sinapis alba converts tryptophan to indole-3-acetaldoxime. Naur, P., Hansen, C.H., Bak, S., Hansen, B.G., Jensen, N.B., Nielsen, H.L., Halkier, B.A. Arch. Biochem. Biophys. (2003) [Pubmed]
  9. Diurnal regulation of the brassinosteroid-biosynthetic CPD gene in Arabidopsis. Bancos, S., Szatmári, A.M., Castle, J., Kozma-Bognár, L., Shibata, K., Yokota, T., Bishop, G.J., Nagy, F., Szekeres, M. Plant Physiol. (2006) [Pubmed]
  10. CPD staining: an effective technique for detection of NORs and other GC-rich chromosomal regions in plants. She, C.W., Liu, J.Y., Song, Y.C. Biotechnic & histochemistry : official publication of the Biological Stain Commission. (2006) [Pubmed]
  11. A proteomics study of the mung bean epicotyl regulated by brassinosteroids under conditions of chilling stress. Huang, B., Chu, C.H., Chen, S.L., Juan, H.F., Chen, Y.M. Cell. Mol. Biol. Lett. (2006) [Pubmed]
  12. Overexpression of a gene encoding a cytochrome P450, CYP78A9, induces large and seedless fruit in arabidopsis. Ito, T., Meyerowitz, E.M. Plant Cell (2000) [Pubmed]
  13. Co-incorporation of heterologously expressed Arabidopsis cytochrome P450 and P450 reductase into soluble nanoscale lipid bilayers. Duan, H., Civjan, N.R., Sligar, S.G., Schuler, M.A. Arch. Biochem. Biophys. (2004) [Pubmed]
  14. C-23 Hydroxylation by Arabidopsis CYP90C1 and CYP90D1 Reveals a Novel Shortcut in Brassinosteroid Biosynthesis. Ohnishi, T., Szatmari, A.M., Watanabe, B., Fujita, S., Bancos, S., Koncz, C., Lafos, M., Shibata, K., Yokota, T., Sakata, K., Szekeres, M., Mizutani, M. Plant Cell (2006) [Pubmed]
  15. BAS1: A gene regulating brassinosteroid levels and light responsiveness in Arabidopsis. Neff, M.M., Nguyen, S.M., Malancharuvil, E.J., Fujioka, S., Noguchi, T., Seto, H., Tsubuki, M., Honda, T., Takatsuto, S., Yoshida, S., Chory, J. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  16. Selective interaction of triazole derivatives with DWF4, a cytochrome P450 monooxygenase of the brassinosteroid biosynthetic pathway, correlates with brassinosteroid deficiency in planta. Asami, T., Mizutani, M., Fujioka, S., Goda, H., Min, Y.K., Shimada, Y., Nakano, T., Takatsuto, S., Matsuyama, T., Nagata, N., Sakata, K., Yoshida, S. J. Biol. Chem. (2001) [Pubmed]
  17. Transcription of the Arabidopsis CPD gene, encoding a steroidogenic cytochrome P450, is negatively controlled by brassinosteroids. Mathur, J., Molnár, G., Fujioka, S., Takatsuto, S., Sakurai, A., Yokota, T., Adam, G., Voigt, B., Nagy, F., Maas, C., Schell, J., Koncz, C., Szekeres, M. Plant J. (1998) [Pubmed]
  18. Activation of the cytochrome P450 gene, CYP72C1, reduces the levels of active brassinosteroids in vivo. Nakamura, M., Satoh, T., Tanaka, S., Mochizuki, N., Yokota, T., Nagatani, A. J. Exp. Bot. (2005) [Pubmed]
  19. BIN2, a new brassinosteroid-insensitive locus in Arabidopsis. Li, J., Nam, K.H., Vafeados, D., Chory, J. Plant Physiol. (2001) [Pubmed]
  20. Arabidopsis PAD3, a gene required for camalexin biosynthesis, encodes a putative cytochrome P450 monooxygenase. Zhou, N., Tootle, T.L., Glazebrook, J. Plant Cell (1999) [Pubmed]
  21. Regulation of transcript levels of the Arabidopsis cytochrome p450 genes involved in brassinosteroid biosynthesis. Bancoş, S., Nomura, T., Sato, T., Molnár, G., Bishop, G.J., Koncz, C., Yokota, T., Nagy, F., Szekeres, M. Plant Physiol. (2002) [Pubmed]
  22. Cloning of the Arabidopsis ent-kaurene oxidase gene GA3. Helliwell, C.A., Sheldon, C.C., Olive, M.R., Walker, A.R., Zeevaart, J.A., Peacock, W.J., Dennis, E.S. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  23. Crosstalk in the responses to abiotic and biotic stresses in Arabidopsis: analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray. Narusaka, Y., Narusaka, M., Seki, M., Umezawa, T., Ishida, J., Nakajima, M., Enju, A., Shinozaki, K. Plant Mol. Biol. (2004) [Pubmed]
 
WikiGenes - Universities