The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Targeted enzyme therapy of experimental glomerulonephritis in rats.

We sought to determine whether systemic administration of proteases ameliorates membranous nephritis induced in rats by immunization and challenge with cationic bovine gamma globulin, and whether targeting of protease to glomerular capillaries increases efficacy. Proteases substituted with biotin were targeted via the cationic protein avidin A, which by virtue of its charge has affinity for the glomerular basement membrane. Despite identical pretreatment proteinuria, rats given untargeted protease (biotin-conjugated without avidin, or unconjugated plus avidin) had significantly less proteinuria than saline-treated controls and nephrotic rats given avidin plus biotin-conjugated (targeted) protease had even less proteinuria and reduced glomerular rat IgG and C3. Among more severely nephrotic rats, targeted protease was again more effective than untargeted protease at reducing proteinuria, and also decreased the size of electron-dense glomerular deposits, hypercholesterolemia, and creatininemia. Inactivated targeted proteases had no effect on proteinuria, hypercholesterolemia, or azotemia. Finally, active targeted protease did not affect proteinuria in the nonimmune mediated nephrosis induced by puromycin aminonucleoside. We conclude that systemic protease can specifically diminish glomerular immune deposits, proteinuria, hyperlipidemia, and creatininemia associated with experimental immune complex glomerulonephritis but not toxic nephrosis, and that targeted protease is more effective than untargeted protease.[1]

References

  1. Targeted enzyme therapy of experimental glomerulonephritis in rats. White, R.B., Lowrie, L., Stork, J.E., Iskandar, S.S., Lamm, M.E., Emancipator, S.N. J. Clin. Invest. (1991) [Pubmed]
 
WikiGenes - Universities