The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Nephritis


High impact information on Nephritis


Chemical compound and disease context of Nephritis


Biological context of Nephritis

  • These data indicate that Gas6 induces glomerular cell proliferation in NTN and suggest that this factor contributes to glomerular injury and the progression of chronic nephritis [15].
  • IL-15, a survival factor for kidney epithelial cells, counteracts apoptosis and inflammation during nephritis [16].
  • Interestingly, a distal chromosome 4 locus, Nba1, was linked with nephritis but not with any of the autoantibodies measured, suggesting that it contributes to renal disease at a checkpoint distal to autoantibody production [17].
  • The RR genotype was more frequent in SLE patients as a whole (OR 1.30, 95% CI 1.10-1.52) and in SLE patients without nephritis (OR 1.27, 95% CI 1.04-1.55) compared with disease-free controls [18].
  • Thus cytokine-mediated upregulation of ICAM-1 in lupus nephritis may promote interaction of immune cells with renal tissue [19].

Anatomical context of Nephritis


Gene context of Nephritis

  • Essential role of Gas6 for glomerular injury in nephrotoxic nephritis [15].
  • Lack of chemokine receptor CCR1 enhances Th1 responses and glomerular injury during nephrotoxic nephritis [25].
  • Using the rat model of anti-glomerular basement membrane (GBM) nephritis, we found that mRNA for the chemokine CINC (cytokine-induced neutrophil chemoattractant) was induced in the kidney, and the corresponding protein was elaborated by isolated inflamed glomeruli [26].
  • The protein also corresponds to the mouse protein LN1, which could be involved in the progress of lupus nephritis [27].
  • The epistatic interactions of Sle1 with other susceptibility loci to cause severe nephritis cannot be accounted, however, by these three loci alone, suggesting the existence of an additional locus, termed Sle1d [28].

Analytical, diagnostic and therapeutic context of Nephritis


  1. Thromboxane antagonism in lupus nephritis. Kallenberg, C.G., ter Borg, E.J., Meijer, S., de Jong, P.E. N. Engl. J. Med. (1989) [Pubmed]
  2. Identification of mutations in the COL4A5 collagen gene in Alport syndrome. Barker, D.F., Hostikka, S.L., Zhou, J., Chow, L.T., Oliphant, A.R., Gerken, S.C., Gregory, M.C., Skolnick, M.H., Atkin, C.L., Tryggvason, K. Science (1990) [Pubmed]
  3. Systemic lupus erythematosus with a protein-losing enteropathy. Trentham, D.E., Masi, A.T. JAMA (1976) [Pubmed]
  4. RANTES and monocyte chemoattractant protein-1 (MCP-1) play an important role in the inflammatory phase of crescentic nephritis, but only MCP-1 is involved in crescent formation and interstitial fibrosis. Lloyd, C.M., Minto, A.W., Dorf, M.E., Proudfoot, A., Wells, T.N., Salant, D.J., Gutierrez-Ramos, J.C. J. Exp. Med. (1997) [Pubmed]
  5. VEGF(165) mediates glomerular endothelial repair. Ostendorf, T., Kunter, U., Eitner, F., Loos, A., Regele, H., Kerjaschki, D., Henninger, D.D., Janjic, N., Floege, J. J. Clin. Invest. (1999) [Pubmed]
  6. An inactivating point mutation in the inhibitory wedge of CD45 causes lymphoproliferation and autoimmunity. Majeti, R., Xu, Z., Parslow, T.G., Olson, J.L., Daikh, D.I., Killeen, N., Weiss, A. Cell (2000) [Pubmed]
  7. Efficacy of mycophenolate mofetil in patients with diffuse proliferative lupus nephritis. Hong Kong-Guangzhou Nephrology Study Group. Chan, T.M., Li, F.K., Tang, C.S., Wong, R.W., Fang, G.X., Ji, Y.L., Lau, C.S., Wong, A.K., Tong, M.K., Chan, K.W., Lai, K.N. N. Engl. J. Med. (2000) [Pubmed]
  8. A controlled trial of plasmapheresis therapy in severe lupus nephritis. The Lupus Nephritis Collaborative Study Group. Lewis, E.J., Hunsicker, L.G., Lan, S.P., Rohde, R.D., Lachin, J.M. N. Engl. J. Med. (1992) [Pubmed]
  9. Improvement of renal function with selective thromboxane antagonism in lupus nephritis. Pierucci, A., Simonetti, B.M., Pecci, G., Mavrikakis, G., Feriozzi, S., Cinotti, G.A., Patrignani, P., Ciabattoni, G., Patrono, C. N. Engl. J. Med. (1989) [Pubmed]
  10. Neuraminidase activity and free sialic acid levels in the serum of patients with acute poststreptococcal glomerulonephritis. Rodríguez-Iturbe, B., Katiyar, V.N., Coello, J. N. Engl. J. Med. (1981) [Pubmed]
  11. Treatment of diffuse proliferative lupus nephritis with prednisone and combined prednisone and cyclophosphamide. Donadio, J.V., Holley, K.E., Ferguson, R.H., Ilstrup, D.M. N. Engl. J. Med. (1978) [Pubmed]
  12. Therapy of lupus nephritis. Controlled trial of prednisone and cytotoxic drugs. Austin, H.A., Klippel, J.H., Balow, J.E., le Riche, N.G., Steinberg, A.D., Plotz, P.H., Decker, J.L. N. Engl. J. Med. (1986) [Pubmed]
  13. Ribavirin: efficacy in the treatment of murine autoimmune disease. Klassen, L.W., Budman, D.R., Williams, G.W., Steinberg, A.D., Gerber, N.L. Science (1977) [Pubmed]
  14. Local extrahepatic expression of complement genes C3, factor B, C2, and C4 is increased in murine lupus nephritis. Passwell, J., Schreiner, G.F., Nonaka, M., Beuscher, H.U., Colten, H.R. J. Clin. Invest. (1988) [Pubmed]
  15. Essential role of Gas6 for glomerular injury in nephrotoxic nephritis. Yanagita, M., Ishimoto, Y., Arai, H., Nagai, K., Ito, T., Nakano, T., Salant, D.J., Fukatsu, A., Doi, T., Kita, T. J. Clin. Invest. (2002) [Pubmed]
  16. IL-15, a survival factor for kidney epithelial cells, counteracts apoptosis and inflammation during nephritis. Shinozaki, M., Hirahashi, J., Lebedeva, T., Liew, F.Y., Salant, D.J., Maron, R., Kelley, V.R. J. Clin. Invest. (2002) [Pubmed]
  17. Genetic linkage of IgG autoantibody production in relation to lupus nephritis in New Zealand hybrid mice. Vyse, T.J., Drake, C.G., Rozzo, S.J., Roper, E., Izui, S., Kotzin, B.L. J. Clin. Invest. (1996) [Pubmed]
  18. Role of the Fcgamma receptor IIa polymorphism in susceptibility to systemic lupus erythematosus and lupus nephritis: a meta-analysis. Karassa, F.B., Trikalinos, T.A., Ioannidis, J.P. Arthritis Rheum. (2002) [Pubmed]
  19. Intercellular adhesion molecule-1 (ICAM-1) expression is upregulated in autoimmune murine lupus nephritis. Wuthrich, R.P., Jevnikar, A.M., Takei, F., Glimcher, L.H., Kelley, V.E. Am. J. Pathol. (1990) [Pubmed]
  20. Fc gamma RIII mediates neutrophil recruitment to immune complexes. a mechanism for neutrophil accumulation in immune-mediated inflammation. Coxon, A., Cullere, X., Knight, S., Sethi, S., Wakelin, M.W., Stavrakis, G., Luscinskas, F.W., Mayadas, T.N. Immunity (2001) [Pubmed]
  21. Activation and accumulation of B cells in TACI-deficient mice. Yan, M., Wang, H., Chan, B., Roose-Girma, M., Erickson, S., Baker, T., Tumas, D., Grewal, I.S., Dixit, V.M. Nat. Immunol. (2001) [Pubmed]
  22. A role for Mac-1 (CDIIb/CD18) in immune complex-stimulated neutrophil function in vivo: Mac-1 deficiency abrogates sustained Fcgamma receptor-dependent neutrophil adhesion and complement-dependent proteinuria in acute glomerulonephritis. Tang, T., Rosenkranz, A., Assmann, K.J., Goodman, M.J., Gutierrez-Ramos, J.C., Carroll, M.C., Cotran, R.S., Mayadas, T.N. J. Exp. Med. (1997) [Pubmed]
  23. Expression of smooth muscle cell phenotype by rat mesangial cells in immune complex nephritis. Alpha-smooth muscle actin is a marker of mesangial cell proliferation. Johnson, R.J., Iida, H., Alpers, C.E., Majesky, M.W., Schwartz, S.M., Pritzi, P., Gordon, K., Gown, A.M. J. Clin. Invest. (1991) [Pubmed]
  24. Neoplastic and nonneoplastic lesions in aging (C57BL/6N x C3H/HeN)F1 (B6C3F1) mice. Ward, J.M., Goodman, D.G., Squire, R.A., Chu, K.C., Linhart, M.S. J. Natl. Cancer Inst. (1979) [Pubmed]
  25. Lack of chemokine receptor CCR1 enhances Th1 responses and glomerular injury during nephrotoxic nephritis. Topham, P.S., Csizmadia, V., Soler, D., Hines, D., Gerard, C.J., Salant, D.J., Hancock, W.W. J. Clin. Invest. (1999) [Pubmed]
  26. Cytokine-induced neutrophil chemoattractant mediates neutrophil influx in immune complex glomerulonephritis in rat. Wu, X., Wittwer, A.J., Carr, L.S., Crippes, B.A., DeLarco, J.E., Lefkowith, J.B. J. Clin. Invest. (1994) [Pubmed]
  27. Immunophilins, Refsum disease, and lupus nephritis: the peroxisomal enzyme phytanoyl-COA alpha-hydroxylase is a new FKBP-associated protein. Chambraud, B., Radanyi, C., Camonis, J.H., Rajkowski, K., Schumacher, M., Baulieu, E.E. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  28. The major murine systemic lupus erythematosus susceptibility locus, Sle1, is a cluster of functionally related genes. Morel, L., Blenman, K.R., Croker, B.P., Wakeland, E.K. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  29. Evidence for the superiority of immunosuppressive drugs and prednisone over prednisone alone in lupus nephritis. Results of a pooled analysis. Felson, D.T., Anderson, J. N. Engl. J. Med. (1984) [Pubmed]
  30. Ligand recognition by murine anti-DNA autoantibodies. II. Genetic analysis and pathogenicity. Swanson, P.C., Yung, R.L., Blatt, N.B., Eagan, M.A., Norris, J.M., Richardson, B.C., Johnson, K.J., Glick, G.D. J. Clin. Invest. (1996) [Pubmed]
  31. Systemic lupus erythematosus after renal transplantation: patient and graft survival and disease activity. The Dutch Working Party on Systemic Lupus Erythematosus. Nossent, H.C., Swaak, T.J., Berden, J.H. Ann. Intern. Med. (1991) [Pubmed]
  32. Rheumatoid arthritis, lupus nephritis, and risks of lymphoid irradiation. Grünwald, H.W., Rosner, F. Ann. Intern. Med. (1985) [Pubmed]
  33. The role of environmental antigens in the spontaneous development of autoimmunity in MRL-lpr mice. Maldonado, M.A., Kakkanaiah, V., MacDonald, G.C., Chen, F., Reap, E.A., Balish, E., Farkas, W.R., Jennette, J.C., Madaio, M.P., Kotzin, B.L., Cohen, P.L., Eisenberg, R.A. J. Immunol. (1999) [Pubmed]
WikiGenes - Universities