The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Antileishmanial effect of 3-aminooxy-1-aminopropane is due to polyamine depletion.

The polyamines putrescine, spermidine, and spermine are organic cations that are required for cell growth and differentiation. Ornithine decarboxylase ( ODC), the first and rate-limiting enzyme in the polyamine biosynthetic pathway, catalyzes the conversion of ornithine to putrescine. As the polyamine biosynthetic pathway is essential for the growth and survival of Leishmania donovani, the causative agent of visceral leishmaniasis, inhibition of the pathway is an important leishmaniacidal strategy. In the present study, we examined for the first time the effects of 3-aminooxy-1-aminopropane (APA), an ODC inhibitor, on the growth of L. donovani. APA inhibited the growth of both promastigotes in vitro and amastigotes in the macrophage model, with the 50% inhibitory concentrations being 42 and 5 muM, respectively. However, concentrations of APA up to 200 muM did not affect the viability of macrophages. The effects of APA were completely abolished by the addition of putrescine or spermidine. APA induced a significant decrease in ODC activity and putrescine, spermidine, and trypanothione levels in L. donovani promastigotes. Parasites were transfected with an episomal ODC construct, and these ODC overexpressers exhibited significant resistance to APA and were concomitantly resistant to sodium antimony gluconate (Pentostam), indicating a role for ODC overexpression in antimonial drug resistance. Clinical isolates with sodium antimony gluconate resistance were also found to overexpress ODC and to have significant increases in putrescine and spermidine levels. However, no increase in trypanothione levels was observed. The ODC overexpression in these clinical isolates alleviated the antiproliferative effects of APA. Collectively, our results demonstrate that APA is a potent inhibitor of L. donovani growth and that its leishmaniacidal effect is due to inhibition of ODC.[1]


  1. Antileishmanial effect of 3-aminooxy-1-aminopropane is due to polyamine depletion. Singh, S., Mukherjee, A., Khomutov, A.R., Persson, L., Heby, O., Chatterjee, M., Madhubala, R. Antimicrob. Agents Chemother. (2007) [Pubmed]
WikiGenes - Universities