The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Enhanced bone regeneration associated with decreased apoptosis in mice with partial HIF-1alpha deficiency.

HIF-1alpha activates genes under hypoxia and was hypothesized to regulate bone regeneration. Surprisingly, HIF-1alpha+/- fracture calluses are larger, stronger, and stiffer than HIF-1alpha+/+ calluses because of decreased apoptosis. These data identify apoptosis inhibition as a means to enhance bone regeneration. INTRODUCTION: Bone regeneration subsequent to fracture involves the synergistic activation of multiple signaling pathways. Localized hypoxia after fracture activates hypoxia-inducible factor 1alpha (HIF-1alpha), leading to increased expression of HIF-1 target genes. We therefore hypothesized that HIF-1alpha is a key regulator of bone regeneration. MATERIALS AND METHODS: Fixed femoral fractures were generated in mice with partial HIF-1alpha deficiency (HIF-1alpha+/-) and wildtype littermates (HIF-1alpha+/+). Fracture calluses and intact contralateral femurs from postfracture days (PFDs) 21 and 28 (N=5-10) were subjected to microCT evaluation and four-point bending to assess morphometric and mechanical properties. Molecular analyses were carried out on PFD 7, 10, and 14 samples (N=3) to determine differential gene expression at both mRNA and protein levels. Finally, TUNEL staining was performed on PFD 14 samples (N=2) to elucidate differential apoptosis. RESULTS: Surprisingly, fracture calluses from HIF-1alpha+/- mice exhibited greater mineralization and were larger, stronger, and stiffer. Microarray analyses focused on hypoxia-induced genes revealed differential expression (between genotypes) of several genes associated with the apoptotic pathway. Real-time PCR confirmed these results, showing higher expression of proapoptotic protein phosphatase 2a (PP2A) and lower expression of anti-apoptotic B-cell leukemia/lymphoma 2 (BCL2) in HIF-1alpha+/+ calluses. Subsequent TUNEL staining showed that HIF-1alpha+/+ calluses contained larger numbers of TUNEL+ chondrocytes and osteoblasts than HIF-1alpha+/- calluses. CONCLUSIONS: We conclude that partial HIF-1alpha deficiency results in decreased chondrocytic and osteoblastic apoptosis, thereby allowing the development of larger, stiffer calluses and enhancing bone regeneration. Furthermore, apoptosis inhibition may be a promising target for developing new treatments to accelerate bone regeneration.[1]


  1. Enhanced bone regeneration associated with decreased apoptosis in mice with partial HIF-1alpha deficiency. Komatsu, D.E., Bosch-Marce, M., Semenza, G.L., Hadjiargyrou, M. J. Bone Miner. Res. (2007) [Pubmed]
WikiGenes - Universities