The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Bone Regeneration

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Bone Regeneration


High impact information on Bone Regeneration


Biological context of Bone Regeneration

  • When combined with previous findings regarding the effects of strain and of cell and ECM densities on cell migration, proliferation and differentiation, these results indicate two mechanisms by which tissue dilatation may be a key stimulus for bone regeneration: (1) stretching of cells and (2) altering cell and ECM densities [10].
  • It was observed that bone regeneration and osseointegration may occur to titanium fixtures placed in surgically-created bone defects [11].
  • CONCLUSIONS: These studies show that early OPN and BSP expression and bone regeneration are enhanced by preservation of the PL and that during wound healing the PL contains cells that transiently express some osteoblastic protein markers but not mineralization [12].
  • Implantoplasty followed by topical tetracycline decontamination was used in conjunction with guided bone regeneration [13].

Anatomical context of Bone Regeneration


Associations of Bone Regeneration with chemical compounds


Gene context of Bone Regeneration


Analytical, diagnostic and therapeutic context of Bone Regeneration


  1. Basic fibroblast growth factor may improve devascularized sternal healing. Iwakura, A., Tabata, Y., Nishimura, K., Nakamura, T., Shimizu, Y., Fujita, M., Komeda, M. Ann. Thorac. Surg. (2000) [Pubmed]
  2. Bony healing of large cranial and mandibular defects protected from soft-tissue interposition: A comparative study of spontaneous bone regeneration, osteoconduction, and cancellous autografting in dogs. Lemperle, S.M., Calhoun, C.J., Curran, R.W., Holmes, R.E. Plast. Reconstr. Surg. (1998) [Pubmed]
  3. Cryosurgery in the treatment of giant cell tumors of bone: a report of 52 consecutive cases. Marcove, R.C., Weis, L.D., Vaghaiwalla, M.R., Pearson, R. Clin. Orthop. Relat. Res. (1978) [Pubmed]
  4. The effect of transforming growth factor beta one (TGF-beta 1) on wound healing, with or without barrier membranes, in a Class II furcation defect in sheep. Mohammed, S., Pack, A.R., Kardos, T.B. J. Periodont. Res. (1998) [Pubmed]
  5. Periodontal repair in dogs: rhBMP-2 significantly enhances bone formation under provisions for guided tissue regeneration. Wikesjö, U.M., Xiropaidis, A.V., Thomson, R.C., Cook, A.D., Selvig, K.A., Hardwick, W.R. Journal of clinical periodontology. (2003) [Pubmed]
  6. Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. Peng, H., Wright, V., Usas, A., Gearhart, B., Shen, H.C., Cummins, J., Huard, J. J. Clin. Invest. (2002) [Pubmed]
  7. Platelet-derived growth factor inhibits bone regeneration induced by osteogenin, a bone morphogenetic protein, in rat craniotomy defects. Marden, L.J., Fan, R.S., Pierce, G.F., Reddi, A.H., Hollinger, J.O. J. Clin. Invest. (1993) [Pubmed]
  8. Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression. Shi, S., Gronthos, S., Chen, S., Reddi, A., Counter, C.M., Robey, P.G., Wang, C.Y. Nat. Biotechnol. (2002) [Pubmed]
  9. Impairment of bone healing by insulin receptor substrate-1 deficiency. Shimoaka, T., Kamekura, S., Chikuda, H., Hoshi, K., Chung, U.I., Akune, T., Maruyama, Z., Komori, T., Matsumoto, M., Ogawa, W., Terauchi, Y., Kadowaki, T., Nakamura, K., Kawaguchi, H. J. Biol. Chem. (2004) [Pubmed]
  10. Relationships between tissue dilatation and differentiation in distraction osteogenesis. Morgan, E.F., Longaker, M.T., Carter, D.R. Matrix Biol. (2006) [Pubmed]
  11. Healing at implants with and without primary bone contact. An experimental study in dogs. Scipioni, A., Bruschi, G.B., Giargia, M., Berglundh, T., Lindhe, J. Clinical oral implants research. (1997) [Pubmed]
  12. Osteopontin and bone sialoprotein expression in regenerating rat periodontal ligament and alveolar bone. Lekic, P., Sodek, J., McCulloch, C.A. Anat. Rec. (1996) [Pubmed]
  13. The use of implantoplasty and guided bone regeneration in the treatment of peri-implantitis: two case reports. Suh, J.J., Simon, Z., Jeon, Y.S., Choi, B.G., Kim, C.K. Implant dentistry. (2003) [Pubmed]
  14. Combined angiogenic and osteogenic factor delivery enhances bone marrow stromal cell-driven bone regeneration. Huang, Y.C., Kaigler, D., Rice, K.G., Krebsbach, P.H., Mooney, D.J. J. Bone Miner. Res. (2005) [Pubmed]
  15. Skeletal reconstruction by vascularized allogenic bone transplantation: effects of statin in rats. Ohno, T., Shigetomi, M., Ihara, K., Matsunaga, T., Hashimoto, T., Kawano, H., Sugiyama, T., Kawai, S. Transplantation (2003) [Pubmed]
  16. Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Fujihara, K., Kotaki, M., Ramakrishna, S. Biomaterials (2005) [Pubmed]
  17. Effect of sterilization on bone morphogenetic protein. Ijiri, S., Yamamuro, T., Nakamura, T., Kotani, S., Notoya, K. J. Orthop. Res. (1994) [Pubmed]
  18. Application of bone morphogenetic proteins in the treatment of clinical oral and maxillofacial osseous defects. Boyne, P.J. The Journal of bone and joint surgery. American volume. (2001) [Pubmed]
  19. Aging does not lessen the effectiveness of TGFbeta2-enhanced bone regeneration. Sumner, D.R., Turner, T.M., Cohen, M., Losavio, P., Urban, R.M., Nichols, E.H., McPherson, J.M. J. Bone Miner. Res. (2003) [Pubmed]
  20. Exogenously regulated stem cell-mediated gene therapy for bone regeneration. Moutsatsos, I.K., Turgeman, G., Zhou, S., Kurkalli, B.G., Pelled, G., Tzur, L., Kelley, P., Stumm, N., Mi, S., Müller, R., Zilberman, Y., Gazit, D. Mol. Ther. (2001) [Pubmed]
  21. Platelets can neutralize hydrogen peroxide in an acute toxicity model with cells involved in granulation tissue formation. Kandler, B., Maitz, P., Fischer, M.B., Watzek, G., Gruber, R. Bone (2005) [Pubmed]
  22. Qualitative assessment of natural apatite in vitro and in vivo. Guizzardi, S., Montanari, C., Migliaccio, S., Strocchi, R., Solmi, R., Martini, D., Ruggeri, A. J. Biomed. Mater. Res. (2000) [Pubmed]
  23. In vitro and in vivo synergistic interactions between the Runx2/Cbfa1 transcription factor and bone morphogenetic protein-2 in stimulating osteoblast differentiation. Yang, S., Wei, D., Wang, D., Phimphilai, M., Krebsbach, P.H., Franceschi, R.T. J. Bone Miner. Res. (2003) [Pubmed]
  24. Gene therapy platform for bone regeneration using an exogenously regulated, AAV-2-based gene expression system. Gafni, Y., Pelled, G., Zilberman, Y., Turgeman, G., Apparailly, F., Yotvat, H., Galun, E., Gazit, Z., Jorgensen, C., Gazit, D. Mol. Ther. (2004) [Pubmed]
  25. Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery. Kang, Q., Sun, M.H., Cheng, H., Peng, Y., Montag, A.G., Deyrup, A.T., Jiang, W., Luu, H.H., Luo, J., Szatkowski, J.P., Vanichakarn, P., Park, J.Y., Li, Y., Haydon, R.C., He, T.C. Gene Ther. (2004) [Pubmed]
  26. Mepe is expressed during skeletal development and regeneration. Lu, C., Huang, S., Miclau, T., Helms, J.A., Colnot, C. Histochem. Cell Biol. (2004) [Pubmed]
  27. Osteogenic differentiation induced by bone morphogenetic proteins can be suppressed by platelet-released supernatant in vitro. Gruber, R., Kandler, B., Fischer, M.B., Watzek, G. Clinical oral implants research. (2006) [Pubmed]
  28. Poly(lactide-co-glycolide)/hydroxyapatite delivery of BMP-2-producing cells: a regional gene therapy approach to bone regeneration. Laurencin, C.T., Attawia, M.A., Lu, L.Q., Borden, M.D., Lu, H.H., Gorum, W.J., Lieberman, J.R. Biomaterials (2001) [Pubmed]
  29. Augmented bone regeneration activity of platelet-rich plasma by biodegradable gelatin hydrogel. Hokugo, A., Ozeki, M., Kawakami, O., Sugimoto, K., Mushimoto, K., Morita, S., Tabata, Y. Tissue engineering. (2005) [Pubmed]
  30. Ectopic bone formation in rats: the importance of the carrier. Hartman, E.H., Vehof, J.W., Spauwen, P.H., Jansen, J.A. Biomaterials (2005) [Pubmed]
  31. Promoted bone healing at a rabbit skull gap between autologous bone fragment and the surrounding intact bone with biodegradable microspheres containing transforming growth factor-beta1. Hong, L., Tabata, Y., Miyamoto, S., Yamada, K., Aoyama, I., Tamura, M., Hashimoto, N., Ikada, Y. Tissue engineering. (2000) [Pubmed]
  32. Bone regeneration by transforming growth factor beta1 released from a biodegradable hydrogel. Yamamoto, M., Tabata, Y., Hong, L., Miyamoto, S., Hashimoto, N., Ikada, Y. Journal of controlled release : official journal of the Controlled Release Society. (2000) [Pubmed]
WikiGenes - Universities