The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Distinct RNA sequences in the gag region of human immunodeficiency virus type 1 decrease RNA stability and inhibit expression in the absence of Rev protein.

The expression of Gag, Pol, Vif, Vpr, Vpu, and Env proteins from unspliced and partially spliced human immunodeficiency virus type 1 (HIV-1) mRNAs depends on the viral protein Rev, while the production of Tat, Rev, and Nef from multiply spliced mRNAs does not require Rev. To investigate the difference between gag and tat mRNAs, we generated plasmids expressing tat-gag hybrid mRNAs. Insertion of the gag gene downstream of the tat open reading frame in the tat cDNA resulted in the inhibition of Tat production. This inhibition was caused, at least in part, by a decrease in the stability of the produced mRNA. Deletions in gag defined a 218-nucleotide inhibitory sequence named INS-1 and located at the 5' end of the gag gene. Further experiments indicated the presence of more than one inhibitory sequence in the gag-protease gene region of the viral genome. The inhibitory effect of INS-1 was counteracted by the positive effect mediated by the Rev-Rev-responsive element interaction, indicating that this sequence is important for Rev-regulated gag expression. The INS-1 sequence did not contain any known HIV-1 splice sites and acted independently of splicing. It was found to have an unusually high AU content (61.5% AU), a common feature among cellular mRNAs with short half-lives. These results suggest that HIV-1 and possibly other lentiviruses have evolved to express unstable mRNAs which require additional regulatory factors for their expression. This strategy may offer the virus several advantages, including the ability to enter a state of low or latent expression in the host.[1]


WikiGenes - Universities