The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Genome, Viral

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Genome, Viral


Psychiatry related information on Genome, Viral


High impact information on Genome, Viral

  • Following circularization of the linear viral genome, DNA replication very likely proceeds in two phases: an initial phase of theta replication, initiated at one or more of the origins, followed by a rolling-circle mode of replication [7].
  • Since the pol domain of the 180 kd minor coat protein appears to be responsible for the binding, this result suggests that the RNA polymerase molecule recognizes the viral genome for packaging [8].
  • We constructed mutated a sequences, inserted them into the thymidine kinase gene, and recombined them into the L component of the viral genome [9].
  • Specific deletion mutants within the viral genome show that BPV-1 gene products required for morphological transformation are dispensable for plasmid maintenance [10].
  • One of these species, 8.8 kb long, is only made in the absence of actinomycin D, but it does not contain any self-complementary sequences, and therefore appears to be a complete transcript of the viral genome [4].

Chemical compound and disease context of Genome, Viral


Biological context of Genome, Viral


Anatomical context of Genome, Viral


Associations of Genome, Viral with chemical compounds

  • These DI-RNAs were found to have unusual and variable sedimentation properties in sucrose gradients, but were found to represent unique segments of the viral genome by length measurements in the electron microscope and by hybridization [26].
  • The rat methylase-induced inactivation was reversible, as treatment of recipient cells with 5-azacytidine rendered the non-infectious viral genomes biologically active [27].
  • Ethidium bromide reduces the formation of superhelical viral DNA and concurrently blocks integration of the viral genome [28].
  • A 99.3% loss in viral genome infectivity is observed after a single round of virus infection in ribavirin concentrations sufficient to cause a 9.7-fold increase in mutagenesis [29].
  • Substitution of cysteine for tyrosine at residue 181 into the wild-type viral genome conferred a similar reduction in susceptibility to nevirapine [30].

Gene context of Genome, Viral

  • These cellular cytokines, as well as several cytokines encoded in viral genomes (viral cytokines), form a family of IL-10-related cytokines or the IL-10 family [31].
  • Genomic RNA and DNA from productively infected H9 cells were independently extracted and amplified in reactions with and without reverse transcriptase respectively using primer pairs to the gag, env, tat and nef regions of the viral genome in the same reaction mixture [32].
  • We propose that amino acids 114 to 129 of the NP protein are required for the nucleocapsid to function as a template in viral genome replication [33].
  • The ultimate 3' ORF of the viral genome encodes the capsid protein, and the penultimate ORF encodes the smallest SHFV envelope protein [34].
  • The "rule of six" stipulates that the Paramyxovirus RNA polymerase efficiently replicates only viral genomes counting 6n + 0 nucleotides [35].

Analytical, diagnostic and therapeutic context of Genome, Viral


  1. Phosphorylation of murine type C viral p12 proteins regulates their extent of binding to the homologous viral RNA. Sen, A., Sherr, C.J., Todaro, G.J. Cell (1977) [Pubmed]
  2. The EBV lytic switch protein, Z, preferentially binds to and activates the methylated viral genome. Bhende, P.M., Seaman, W.T., Delecluse, H.J., Kenney, S.C. Nat. Genet. (2004) [Pubmed]
  3. Association of polyoma T antigen and DNA with the nuclear matrix from lytically infected 3T6 cells. Buckler-White, A.J., Humphrey, G.W., Pigiet, V. Cell (1980) [Pubmed]
  4. Analysis of a 5' leader sequence on murine leukemia virus 21S RNA: heteroduplex mapping with long reverse transcriptase products. Rothenberg, E., Donoghue, D.J., Baltimore, D. Cell (1978) [Pubmed]
  5. Complete nucleotide sequence and organization of the Moloney murine sarcoma virus genome. Reddy, E.P., Smith, M.J., Aaronson, S.A. Science (1981) [Pubmed]
  6. Herpes-simplex viral genome and senile and presenile dementias of Alzheimer and Pick. Middleton, P.J., Petric, M., Kozak, M., Rewcastle, N.B., McLachlan, D.R. Lancet (1980) [Pubmed]
  7. Herpes simplex virus DNA replication. Boehmer, P.E., Lehman, I.R. Annu. Rev. Biochem. (1997) [Pubmed]
  8. Portable encapsidation signal of the L-A double-stranded RNA virus of S. cerevisiae. Fujimura, T., Esteban, R., Esteban, L.M., Wickner, R.B. Cell (1990) [Pubmed]
  9. Isomerization of herpes simplex virus 1 genome: identification of the cis-acting and recombination sites within the domain of the a sequence. Chou, J., Roizman, B. Cell (1985) [Pubmed]
  10. Characterization of the bovine papilloma virus plasmid maintenance sequences. Lusky, M., Botchan, M.R. Cell (1984) [Pubmed]
  11. Hepatoma variants (C2) are defective for transcriptional and post-transcriptional actions from both endogenous and viral genomes. Friedman, J.M., Babiss, L.E., Weiss, M., Darnell, J.E. EMBO J. (1987) [Pubmed]
  12. The nucleocapsid protein specifically anneals tRNALys-3 onto a noncomplementary primer binding site within the HIV-1 RNA genome in vitro. Chan, B., Musier-Forsyth, K. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  13. Molecular genetics of herpes simplex virus. III. Fine mapping of a genetic locus determining resistance to phosphonoacetate by two methods of marker transfer. Knipe, D.M., Ruyechan, W.T., Roizman, B. J. Virol. (1979) [Pubmed]
  14. Polyomavirus large T antigen binds independently to multiple, unique regions on the viral genome. Pomerantz, B.J., Mueller, C.R., Hassell, J.A. J. Virol. (1983) [Pubmed]
  15. Polyamines in encephalomyocarditis virus. Sheppard, S.L., Burness, A.T., Boyle, S.M. J. Virol. (1980) [Pubmed]
  16. Molecular engineering of the herpes simplex virus genome: insertion of a second L-S junction into the genome causes additional genome inversions. Mocarski, E.S., Post, L.E., Roizman, B. Cell (1980) [Pubmed]
  17. A new acute transforming feline retrovirus and relationship of its oncogene v-kit with the protein kinase gene family. Besmer, P., Murphy, J.E., George, P.C., Qiu, F.H., Bergold, P.J., Lederman, L., Snyder, H.W., Brodeur, D., Zuckerman, E.E., Hardy, W.D. Nature (1986) [Pubmed]
  18. Specific recognition nucleotides and their DNA context determine the affinity of E2 protein for 17 binding sites in the BPV-1 genome. Li, R., Knight, J., Bream, G., Stenlund, A., Botchan, M. Genes Dev. (1989) [Pubmed]
  19. Wheat dwarf virus, a geminivirus of graminaceous plants needs splicing for replication. Schalk, H.J., Matzeit, V., Schiller, B., Schell, J., Gronenborn, B. EMBO J. (1989) [Pubmed]
  20. The promoter of a novel human papillomavirus (HPV77) associated with skin cancer displays UV responsiveness, which is mediated through a consensus p53 binding sequence. Purdie, K.J., Pennington, J., Proby, C.M., Khalaf, S., de Villiers, E.M., Leigh, I.M., Storey, A. EMBO J. (1999) [Pubmed]
  21. Lymphocytes transformed by Epstein-Barr virus. Induction of nuclear antigen reactive with antibody in rheumatoid arthritis. Alspaugh, M.A., Jensen, F.C., Rabin, H., Tan, E.M. J. Exp. Med. (1978) [Pubmed]
  22. Functional analysis of a DNA-shuffled movement protein reveals that microtubules are dispensable for the cell-to-cell movement of tobacco mosaic virus. Gillespie, T., Boevink, P., Haupt, S., Roberts, A.G., Toth, R., Valentine, T., Chapman, S., Oparka, K.J. Plant Cell (2002) [Pubmed]
  23. Demonstration of the Burkitt's lymphoma Epstein-Barr virus phenotype in dividing latently infected memory cells in vivo. Hochberg, D., Middeldorp, J.M., Catalina, M., Sullivan, J.L., Luzuriaga, K., Thorley-Lawson, D.A. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  24. Identification of Epstein-Barr virus sequences that encode a nuclear antigen expressed in latently infected lymphocytes. Hearing, J.C., Nicolas, J.C., Levine, A.J. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  25. Herpes simplex virus type 1 entry into host cells: reconstitution of capsid binding and uncoating at the nuclear pore complex in vitro. Ojala, P.M., Sodeik, B., Ebersold, M.W., Kutay, U., Helenius, A. Mol. Cell. Biol. (2000) [Pubmed]
  26. Isolation and characterization of Sendai virus DI-RNAs. Kolakofsky, D. Cell (1976) [Pubmed]
  27. Retrovirus genomes methylated by mammalian but not bacterial methylase are non-infectious. Simon, D., Stuhlmann, H., Jähner, D., Wagner, H., Werner, E., Jaenisch, R. Nature (1983) [Pubmed]
  28. Ethidium bromide inhibits appearance of closed circular viral DNA and integration of virus-specific DNA in duck cells infected by avian sarcoma virus. Guntaka, R.V., Mahy, B.W., Bishop, J.M., Varmus, H.E. Nature (1975) [Pubmed]
  29. RNA virus error catastrophe: direct molecular test by using ribavirin. Crotty, S., Cameron, C.E., Andino, R. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  30. Human immunodeficiency virus type 1 mutants resistant to nonnucleoside inhibitors of reverse transcriptase arise in tissue culture. Richman, D., Shih, C.K., Lowy, I., Rose, J., Prodanovich, P., Goff, S., Griffin, J. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  31. The family of IL-10-related cytokines and their receptors: related, but to what extent? Kotenko, S.V. Cytokine Growth Factor Rev. (2002) [Pubmed]
  32. Co-amplification of multiple regions of the HIV-1 genome by the polymerase chain reaction: potential use in multiple diagnosis. Hewlett, I.K., Ruta, M., Cristiano, K., Hawthorne, C.A., Epstein, J.S. Oncogene (1989) [Pubmed]
  33. An amino-terminal domain of the Sendai virus nucleocapsid protein is required for template function in viral RNA synthesis. Myers, T.M., Moyer, S.A. J. Virol. (1997) [Pubmed]
  34. Molecular characterization of the 3' terminus of the simian hemorrhagic fever virus genome. Godeny, E.K., Zeng, L., Smith, S.L., Brinton, M.A. J. Virol. (1995) [Pubmed]
  35. "Rule of six": how does the Sendai virus RNA polymerase keep count? Vulliémoz, D., Roux, L. J. Virol. (2001) [Pubmed]
  36. Genotypic and phenotypic resistance to stavudine after long-term monotherapy. BMS-020 Spanish Study Group. Holguín, A., Dietrich, U., Immelmann, A., Soriano, V. Antivir. Ther. (Lond.) (1998) [Pubmed]
  37. Simian virus 40 large T-antigen point mutants that are defective in viral DNA replication but competent in oncogenic transformation. Manos, M.M., Gluzman, Y. Mol. Cell. Biol. (1984) [Pubmed]
  38. Hepatitis C virus and porphyria cutanea tarda: evidence of a strong association. Fargion, S., Piperno, A., Cappellini, M.D., Sampietro, M., Fracanzani, A.L., Romano, R., Caldarelli, R., Marcelli, R., Vecchi, L., Fiorelli, G. Hepatology (1992) [Pubmed]
  39. Detection of viral genomes in the liver by in situ hybridization using 35S-, bromodeoxyuridine-, and biotin-labeled probes. Niedobitek, G., Finn, T., Herbst, H., Stein, H. Am. J. Pathol. (1989) [Pubmed]
  40. Optimized viral dose and transient immunosuppression enable herpes simplex virus ICP0-null mutants To establish wild-type levels of latency in vivo. Halford, W.P., Schaffer, P.A. J. Virol. (2000) [Pubmed]
WikiGenes - Universities