The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Herpes simplex virus-specified DNA polymerase is the target for the antiviral action of 9-(2-phosphonylmethoxyethyl)adenine.

9-(2-Phosphonylmethoxyethyl)adenine (PMEA) is a new antiviral compound with activity against herpes simplex virus (HSV) and retroviruses including human immunodeficiency virus. Although it has been suggested that the anti-HSV action of PMEA is through inhibition of the viral DNA polymerase via the diphosphorylated metabolite of PMEA (PMEApp), no conclusive evidence for this has been presented. We report that in cross-resistance studies, a PMEA-resistant HSV variant (PMEAr-1) was resistant to phosphonoformic acid, a compound which directly inhibits the HSV DNA polymerase. In addition, phosphonoformic acid-resistant HSV variants with defined drug resistance mutations within the HSV DNA polymerase gene were resistant to PMEA. Furthermore, the HSV DNA polymerase purified from PMEAr-1 was resistant to PMEApp in comparison with the enzyme from the parental virus. Moreover, PMEA inhibited HSV DNA synthesis in cell culture. These results provide strong evidence that HSV DNA polymerase is the major target for the anti-viral action of PMEA. Further studies showed that HSV DNA polymerase incorporated PMEApp into DNA in vitro, while the HSV polymerase- associated 3'-5' exonuclease was able to remove the incorporated PMEA. Thus, the inhibition of HSV DNA polymerase by PMEApp appears to involve chain termination after its incorporation into DNA.[1]


WikiGenes - Universities