The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

UL30  -  DNA polymerase catalytic subunit

Human herpesvirus 1

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of UL30

  • Taken together, the results indicate that pORF30 and pORF18 are the equine herpesvirus 1 counterparts of herpes simplex virus type 1 UL30 and UL42 and share many, but not all, of their characteristics [1].
  • Herpes simplex virus DNA polymerase (HSV pol) holoenzyme consists of a large catalytic (UL30 gene product) and a small auxiliary subunit (UL42 gene product) [2].
  • Identification and transcriptional analysis of the homologues of the herpes simplex virus type 1 UL30 to UL40 genes in the genome of nononcogenic Marek's disease virus serotype 2 [3].
  • (vi) Expression of HSV-1 productive genes (i.e. alpha0, alpha4, alpha27, UL30 and UL18) dropped precipitously in the presence of ACV and remained undetectable or continued to decline following its removal, whereas the levels of LAT and the host gene G3PDH remained relatively constant throughout the 31 day study period as measured by RT-PCR [4].
  • Male homosexuals (n = 35) had significantly greater levels of DNA polymerase (P less than 0.05) and a trend toward higher hepatitis B virus DNA levels than heterosexuals (n = 39) [5].

High impact information on UL30


Chemical compound and disease context of UL30


Biological context of UL30


Anatomical context of UL30


Associations of UL30 with chemical compounds

  • Finally, manganese induced a conformational change in the structure of UL30 bound to the platinated substrate [21].
  • Translesion replication of the cisplatin adduct by UL30 led to the incorporation of mismatched bases, with the preferential incorporation of dAMP opposite the 3' guanine of the lesion [21].
  • The enzyme differs from the cellular DNA polymerases, but resembles herpes-virus-induced DNA polymerase in its primer template preference, high monovalent cation requirement for activity, and sensitivity to phosphonoacetate [17].
  • Two of these mutants, PAAr5 and BWr, specified nucleotidyl transferase (DNA polymerase) activities which were less sensitive to inhibition by acyclovir triphosphate than their wild-type counterparts [22].
  • Cell extracts from a strain of Saccharomyces cerevisiae harboring this vector (Y-MH202, expresser cells) grown in the presence of galactose and assayed in high salt (100 mM ammonium sulfate) contained a novel DNA polymerase activity [23].

Physical interactions of UL30


Other interactions of UL30

  • We have developed a panel of 14 monoclonal antibodies (MAbs) to POL, the catalytic subunit of herpes simplex virus type 1 (HSV-1) DNA polymerase encoded by gene UL30, and one MAb to the UL52 protein, another of the seven proteins essential for replication of HSV DNA [26].
  • Notably, oriS is flanked by the immediate-early (IE) ICP4 and ICP22/47 promoters, and oriL is flanked by the early (E) UL29 and UL30 promoters [27].
  • Both PCRs produced the expected amplicons (a 492 bp UL30, and 305 bp UL15) [28].
  • From the analysis of mutants defective in both UL30 and UL5, we suggest that the prereplicative site pattern can form under conditions in which viral and/or cellular polymerases are inhibited [29].
  • However, to date, no interaction between UL9 and a component of the DNA polymerase holoenzyme has been demonstrated [30].

Analytical, diagnostic and therapeutic context of UL30


  1. Cloning, expression, and functional characterization of the equine herpesvirus 1 DNA polymerase and its accessory subunit. Loregian, A., Case, A., Cancellotti, E., Valente, C., Marsden, H.S., Palù, G. J. Virol. (2006) [Pubmed]
  2. DNA and protein interactions of the small subunit of herpes simplex virus type 1 DNA polymerase. Franz, C., Kühn, F.J., Knopf, C.W. Virology (1999) [Pubmed]
  3. Identification and transcriptional analysis of the homologues of the herpes simplex virus type 1 UL30 to UL40 genes in the genome of nononcogenic Marek's disease virus serotype 2. Izumiya, Y., Jang, H.K., Sugawara, M., Ikeda, Y., Miura, R., Nishimura, Y., Nakamura, K., Miyazawa, T., Kai, C., Mikami, T. J. Gen. Virol. (1999) [Pubmed]
  4. Establishment of a quiescent herpes simplex virus type 1 infection in neurally-differentiated PC12 cells. Danaher, R.J., Jacob, R.J., Miller, C.S. J. Neurovirol. (1999) [Pubmed]
  5. Relationship between histology, aminotransferase levels, and viral replication in chronic hepatitis B. Mills, C.T., Lee, E., Perrillo, R. Gastroenterology (1990) [Pubmed]
  6. The crystal structure of an unusual processivity factor, herpes simplex virus UL42, bound to the C terminus of its cognate polymerase. Zuccola, H.J., Filman, D.J., Coen, D.M., Hogle, J.M. Mol. Cell (2000) [Pubmed]
  7. Interaction of herpes simplex virus 1 origin-binding protein with DNA polymerase alpha. Lee, S.S., Dong, Q., Wang, T.S., Lehman, I.R. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  8. 9-[(2RS)-3-fluoro-2-phosphonylmethoxypropyl] derivatives of purines: a class of highly selective antiretroviral agents in vitro and in vivo. Balzarini, J., Holy, A., Jindrich, J., Dvorakova, H., Hao, Z., Snoeck, R., Herdewijn, P., Johns, D.G., De Clercq, E. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  9. 2-Acetylpyridine 5-[(dimethylamino)thiocarbonyl]-thiocarbonohydrazone (A1110U), a potent inactivator of ribonucleotide reductases of herpes simplex and varicella-zoster viruses and a potentiator of acyclovir. Spector, T., Harrington, J.A., Morrison, R.W., Lambe, C.U., Nelson, D.J., Averett, D.R., Biron, K., Furman, P.A. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  10. On the mechanism of selective inhibition of herpesvirus replication by (E)-5-(2-bromovinyl)-2'-deoxyuridine. Allaudeen, H.S., Kozarich, J.W., Bertino, J.R., De Clercq, E. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  11. Herpes simplex virus type 1 DNA polymerase. Mechanism-based affinity chromatography. Reardon, J.E. J. Biol. Chem. (1990) [Pubmed]
  12. Herpes simplex virus type 1 DNA polymerase. Mutational analysis of the 3'-5'-exonuclease domain. Kühn, F.J., Knopf, C.W. J. Biol. Chem. (1996) [Pubmed]
  13. Herpes simplex virus type 1 DNA polymerase. Mechanism of inhibition by acyclovir triphosphate. Reardon, J.E., Spector, T. J. Biol. Chem. (1989) [Pubmed]
  14. Herpes simplex virus type I DNA polymerase. Kinetic properties of the associated 3'-5' exonuclease activity and its role in araAMP incorporation. Derse, D., Cheng, Y.C. J. Biol. Chem. (1981) [Pubmed]
  15. Identification of the Marek's disease virus serotype 2 genes homologous to the glycoprotein B (UL27), ICP18.5 (UL28) and major DNA-binding protein (UL29) genes of herpes simplex virus type 1. Kato, K., Jang, H.K., Izumiya, Y., Cai, J.S., Tsushima, Y., Miyazawa, T., Kai, C., Mikami, T. J. Vet. Med. Sci. (1999) [Pubmed]
  16. Sequential switching of DNA polymerase and thymidine kinase-mediated HSV-1 drug resistance in an immunocompromised child. Stránská, R., van Loon, A.M., Bredius, R.G., Polman, M., Nienhuis, E., Beersma, M.F., Lankester, A.C., Schuurman, R. Antivir. Ther. (Lond.) (2004) [Pubmed]
  17. Isolation of a herpesvirus-specific DNA polymerase from tissues of an American patient with Burkitt lymphoma. Allaudeen, H.S., Bertino, J.R. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  18. Functional interaction between the herpes simplex-1 DNA polymerase and UL42 protein. Hernandez, T.R., Lehman, I.R. J. Biol. Chem. (1990) [Pubmed]
  19. Potent inhibition of human immunodeficiency virus and herpes simplex virus type 1 by 9-(2-phosphonylmethoxyethyl)adenine in primary macrophages is determined by drug metabolism, nucleotide pools, and cytokines. Perno, C.F., Balestra, E., Aquaro, S., Panti, S., Cenci, A., Lazzarino, G., Tavazzi, B., Di Pierro, D., Balzarini, J., Calio, R. Mol. Pharmacol. (1996) [Pubmed]
  20. Expression of herpes simplex virus type 1 DNA polymerase gene by in vitro translation and effects of gene deletions on activity. Dorsky, D.I., Crumpacker, C.S. J. Virol. (1988) [Pubmed]
  21. Effect of manganese on in vitro replication of damaged DNA catalyzed by the herpes simplex virus type-1 DNA polymerase. Villani, G., Tanguy Le Gac, N., Wasungu, L., Burnouf, D., Fuchs, R.P., Boehmer, P.E. Nucleic Acids Res. (2002) [Pubmed]
  22. Acyclovir-resistant mutants of herpes simplex virus type 1 express altered DNA polymerase or reduced acyclovir phosphorylating activities. Furman, P.A., Coen, D.M., St Clair, M.H., Schaffer, P.A. J. Virol. (1981) [Pubmed]
  23. Expression of herpes simplex virus type 1 DNA polymerase in Saccharomyces cerevisiae and detection of virus-specific enzyme activity in cell-free lysates. Haffey, M.L., Stevens, J.T., Terry, B.J., Dorsky, D.I., Crumpacker, C.S., Wietstock, S.M., Ruyechan, W.T., Field, A.K. J. Virol. (1988) [Pubmed]
  24. Mutations in the C terminus of herpes simplex virus type 1 DNA polymerase can affect binding and stimulation by its accessory protein UL42 without affecting basal polymerase activity. Tenney, D.J., Micheletti, P.A., Stevens, J.T., Hamatake, R.K., Matthews, J.T., Sanchez, A.R., Hurlburt, W.W., Bifano, M., Cordingley, M.G. J. Virol. (1993) [Pubmed]
  25. The catalytic subunit of the DNA polymerase of herpes simplex virus type 1 interacts specifically with the C terminus of the UL8 component of the viral helicase-primase complex. Marsden, H.S., McLean, G.W., Barnard, E.C., Francis, G.J., MacEachran, K., Murphy, M., McVey, G., Cross, A., Abbotts, A.P., Stow, N.D. J. Virol. (1997) [Pubmed]
  26. The herpes simplex virus type 1 UL8 protein influences the intracellular localization of the UL52 but not the ICP8 or POL replication proteins in virus-infected cells. Marsden, H.S., Cross, A.M., Francis, G.J., Patel, A.H., MacEachran, K., Murphy, M., McVey, G., Haydon, D., Abbotts, A., Stow, N.D. J. Gen. Virol. (1996) [Pubmed]
  27. Herpes simplex virus type 1 origins of DNA replication play no role in the regulation of flanking promoters. Summers, B.C., Leib, D.A. J. Virol. (2002) [Pubmed]
  28. Comparison of two methods of PCR followed by enzymatic restriction digestion for detection and typing of herpes simplex viruses isolated from patients with mucocutaneous or cutaneous lesions. Herrera-Mart??nez, E., Ondarza-Aguilera, R., Estrada-Parra, S., P??rez, G., Barr??n, B.L. Rev. Latinoam. Microbiol. (2005) [Pubmed]
  29. Herpes simplex virus type 1 prereplicative sites are a heterogeneous population: only a subset are likely to be precursors to replication compartments. Lukonis, C.J., Burkham, J., Weller, S.K. J. Virol. (1997) [Pubmed]
  30. Interaction between the herpes simplex virus type 1 origin-binding and DNA polymerase accessory proteins. Monahan, S.J., Grinstead, L.A., Olivieri, W., Parris, D.S. Virology (1998) [Pubmed]
  31. Site-specific mutagenesis of a highly conserved region of the herpes simplex virus type 1 DNA polymerase gene. Dorsky, D.I., Crumpacker, C.S. J. Virol. (1990) [Pubmed]
  32. PCR assessment of HSV-1 corneal infection in animals treated with rose bengal and lissamine green B. Stroop, W.G., Chen, T.M., Chodosh, J., Kienzle, T.E., Stroop, J.L., Ling, J.Y., Miles, D.A. Invest. Ophthalmol. Vis. Sci. (2000) [Pubmed]
  33. Herpes simplex virus associated erythema multiforme (HAEM) is mechanistically distinct from drug-induced erythema multiforme: interferon-gamma is expressed in HAEM lesions and tumor necrosis factor-alpha in drug-induced erythema multiforme lesions. Kokuba, H., Aurelian, L., Burnett, J. J. Invest. Dermatol. (1999) [Pubmed]
WikiGenes - Universities