The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

UL30  -  DNA polymerase catalytic subunit

Human herpesvirus 2

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of UL30


High impact information on UL30

  • Herpes simplex virus infections are the cause of significant morbidity, and currently used therapeutics are largely based on modified nucleoside analogs that inhibit viral DNA polymerase function [6].
  • There was a rise in DNA polymerase activity and HBsAg titer with a fall in serum aspartate aminotransferase values during treatment [7].
  • Upon discontinuing therapy, DNa polymerase activity fell dramatically in all 3 patients who completed their course of prednisone and became undetectable in 1 [7].
  • The 3.3-kbp BamHI fragment containing most of the DNA polymerase gene from isolate 615.8 was purified and used to successfully transfer both acyclovir and foscarnet resistance [4].
  • Acquisition of in-vitro acyclovir resistance was associated with progression of clinical disease, as well as with maintenance of pathogenicity in an animal model and at least one mutation in viral DNA polymerase [4].

Chemical compound and disease context of UL30


Biological context of UL30


Anatomical context of UL30

  • The mutated protein was as active as wildtype (wt) UL30 in a DNA polymerase assay in which activated calf thymus DNA was used as template [15].
  • Processive DNA replication by the DNA polymerase isolated from HSV-1-infected Vero cells or the recombinant DNA polymerase-UL42 protein complex requires that the single-stranded DNA be coated with saturating levels of ICP8 [16].
  • Recently it was found that some of them also have effects on proliferating eukaryotic cells (Neftel, K.A. and Hübscher, U. (1987) Antimicrob. Agents Chemother. 31, 1657-1661), and one such effect was shown to be the inhibition of DNA polymerase alpha (Huynh Do,U., Neftel, K.A., Spadari, S. and Hübscher, U. (1987) Nucl. Acids Res. 15, 10495-10506) [17].
  • An inhibitor of viral TK or an inhibitor of viral DNA polymerase greatly decreased viral lytic gene expression in trigeminal ganglion tissue latently infected with wild-type virus and explanted in culture [18].
  • In addition, this compound shows significant inhibition of DNA synthesis in isolated nuclei obtained from adenovirus-infected or uninfected cells and is a potent inhibitor of HeLa cell DNA polymerase alpha [19].

Associations of UL30 with chemical compounds


Other interactions of UL30


Analytical, diagnostic and therapeutic context of UL30


  1. Herpes simplex-1 DNA polymerase. Identification of an intrinsic 5'----3' exonuclease with ribonuclease H activity. Crute, J.J., Lehman, I.R. J. Biol. Chem. (1989) [Pubmed]
  2. Fulminant hepatitis B in successive female sexual partners of two anti-HBe-positive males. Fagan, E.A., Smith, P.M., Davison, F., Williams, R. Lancet (1986) [Pubmed]
  3. Adenine arabinoside monophosphate (vidarabine phosphate) in combination with human leukocyte interferon in the treatment of chronic hepatitis B. A randomized, double-blinded, placebo-controlled trial. Garcia, G., Smith, C.I., Weissberg, J.I., Eisenberg, M., Bissett, J., Nair, P.V., Mastre, B., Rosno, S., Roskamp, D., Waterman, K. Ann. Intern. Med. (1987) [Pubmed]
  4. Progressive esophagitis from acyclovir-resistant herpes simplex. Clinical roles for DNA polymerase mutants and viral heterogeneity? Sacks, S.L., Wanklin, R.J., Reece, D.E., Hicks, K.A., Tyler, K.L., Coen, D.M. Ann. Intern. Med. (1989) [Pubmed]
  5. Resistance of herpes simplex virus to 9-[[2-hydroxy-1-(hydroxymethyl)ethoxy]methyl]guanine: physical mapping of drug synergism within the viral DNA polymerase locus. Crumpacker, C.S., Kowalsky, P.N., Oliver, S.A., Schnipper, L.E., Field, A.K. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  6. Herpes simplex virus helicase-primase inhibitors are active in animal models of human disease. Crute, J.J., Grygon, C.A., Hargrave, K.D., Simoneau, B., Faucher, A.M., Bolger, G., Kibler, P., Liuzzi, M., Cordingley, M.G. Nat. Med. (2002) [Pubmed]
  7. Effects of immunosuppressive therapy on viral markers in chronic active hepatitis B. Scullard, G.H., Smith, C.I., Merigan, T.C., Robinson, W.S., Gregory, P.B. Gastroenterology (1981) [Pubmed]
  8. Acyclovir-resistant herpes simplex virus infection due to altered DNA polymerase. Parker, A.C., Craig, J.I., Collins, P., Oliver, N., Smith, I. Lancet (1987) [Pubmed]
  9. Adenine arabinoside therapy in HBsAg-positive chronic liver disease: a controlled study. Bassendine, M.F., Chadwick, R.G., Salmeron, J., Shipton, U., Thomas, H.C., Sherlock, S. Gastroenterology (1981) [Pubmed]
  10. Mutations in hepatitis B DNA polymerase associated with resistance to lamivudine do not confer resistance to adefovir in vitro. Xiong, X., Flores, C., Yang, H., Toole, J.J., Gibbs, C.S. Hepatology (1998) [Pubmed]
  11. Seroconversion from hepatitis B e antigen to antibody in chronic type B hepatitis. Hoofnagle, J.H., Dusheiko, G.M., Seeff, L.B., Jones, E.A., Waggoner, J.G., Bales, Z.B. Ann. Intern. Med. (1981) [Pubmed]
  12. A DNA binding protein specific for an origin of replication of herpes simplex virus type 1. Elias, P., O'Donnell, M.E., Mocarski, E.S., Lehman, I.R. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  13. The enzymological basis for resistance of herpesvirus DNA polymerase mutants to acyclovir: relationship to the structure of alpha-like DNA polymerases. Huang, L., Ishii, K.K., Zuccola, H., Gehring, A.M., Hwang, C.B., Hogle, J., Coen, D.M. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  14. A method for identifying the viral genes required for herpesvirus DNA replication. Challberg, M.D. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  15. Sequences at the C-terminus of the herpes simplex virus type 1 UL30 protein are dispensable for DNA polymerase activity but not for viral origin-dependent DNA replication. Stow, N.D. Nucleic Acids Res. (1993) [Pubmed]
  16. Functional interaction between the herpes simplex-1 DNA polymerase and UL42 protein. Hernandez, T.R., Lehman, I.R. J. Biol. Chem. (1990) [Pubmed]
  17. HP 0.35, a cephalosporin degradation product is a specific inhibitor of lentiviral RNAses H. Hafkemeyer, P., Neftel, K., Hobi, R., Pfaltz, A., Lutz, H., Lüthi, K., Focher, F., Spadari, S., Hübscher, U. Nucleic Acids Res. (1991) [Pubmed]
  18. Evidence for a novel regulatory pathway for herpes simplex virus gene expression in trigeminal ganglion neurons. Kosz-Vnenchak, M., Jacobson, J., Coen, D.M., Knipe, D.M. J. Virol. (1993) [Pubmed]
  19. Synthesis of herpes simplex virus, vaccinia virus, and adenovirus DNA in isolated HeLa cell nuclei. I. Effect of viral-specific antisera and phosphonoacetic acid. Bolden, A., Aucker, J., Weissbach, A. J. Virol. (1975) [Pubmed]
  20. Replication of herpes simplex virus DNA: localization of replication recognition signals within defective virus genomes. Vlazny, D.A., Frenkel, N. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  21. Effect of phosphorothioate homo-oligodeoxynucleotides on herpes simplex virus type 2-induced DNA polymerase. Gao, W.Y., Stein, C.A., Cohen, J.S., Dutschman, G.E., Cheng, Y.C. J. Biol. Chem. (1989) [Pubmed]
  22. Herpes simplex virus-specified DNA polymerase is the target for the antiviral action of 9-(2-phosphonylmethoxyethyl)adenine. Foster, S.A., Cerny, J., Cheng, Y.C. J. Biol. Chem. (1991) [Pubmed]
  23. Resistance of herpes simplex virus to acycloguanosine: role of viral thymidine kinase and DNA polymerase loci. Schnipper, L.E., Crumpacker, C.S. Proc. Natl. Acad. Sci. U.S.A. (1980) [Pubmed]
  24. Transcriptional and genetic analyses of the herpes simplex virus type 1 genome: coordinates 0.29 to 0.45. Holland, L.E., Sandri-Goldin, R.M., Goldin, A.L., Glorioso, J.C., Levine, M. J. Virol. (1984) [Pubmed]
  25. Mechanisms of inhibition of herpes simplex virus type 2 growth by 28-mer phosphorothioate oligodeoxycytidine. Gao, W.Y., Jaroszewski, J.W., Cohen, J.S., Cheng, Y.C. J. Biol. Chem. (1990) [Pubmed]
  26. Nonstructural proteins of herpes simplex virus. I. Purification of the induced DNA polymerase. Powell, K.L., Purifoy, D.J. J. Virol. (1977) [Pubmed]
  27. Molecular localization of abortive infection of resident peritoneal macrophages by herpes simplex virus type 1. Morahan, P.S., Mama, S., Anaraki, F., Leary, K. J. Virol. (1989) [Pubmed]
  28. Fine mapping and molecular cloning of mutations in the herpes simplex virus DNA polymerase locus. Coen, D.M., Aschman, D.P., Gelep, P.T., Retondo, M.J., Weller, S.K., Schaffer, P.A. J. Virol. (1984) [Pubmed]
  29. Correct intranuclear localization of herpes simplex virus DNA polymerase requires the viral ICP8 DNA-binding protein. Bush, M., Yager, D.R., Gao, M., Weisshart, K., Marcy, A.I., Coen, D.M., Knipe, D.M. J. Virol. (1991) [Pubmed]
WikiGenes - Universities