The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Inhibitory effects of curcumin on in vitro lipoxygenase and cyclooxygenase activities in mouse epidermis.

Topical application of curcumin, the yellow pigment in turmeric and curry, strongly inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ornithine decarboxylase activity, DNA synthesis, and tumor promotion in mouse skin (Huang et al., Cancer Res., 48: 5941-5946, 1988). Chlorogenic acid, caffeic acid, and ferulic acid (structurally related dietary compounds) were considerably less active. In the present study, topical application of curcumin markedly inhibited TPA- and arachidonic acid-induced epidermal inflammation (ear edema) in mice, but chlorogenic acid, caffeic acid, and ferulic acid were only weakly active or inactive. The in vitro addition of 3, 10, 30, or 100 microM curcumin to cytosol from homogenates of mouse epidermis inhibited the metabolism of arachidonic acid to 5-hydroxyeicosatetraenoic acid (5-HETE) by 40, 60, 66, or 83%, respectively, and the metabolism of arachidonic acid to 8-HETE was inhibited by 40, 51, 77, or 85%, respectively [IC50 (concentration needed for 50% inhibition) = 5-10 microM]. Chlorogenic acid, caffeic acid, or ferulic acid (100 microM) inhibited the metabolism of arachidonic acid to 5-HETE by 36, 10, or 16%, respectively, and these hydroxylated cinnamic acid derivatives inhibited the metabolism of arachidonic acid to 8-HETE by 37, 20, or 10%, respectively (IC50 greater than 100 microM). The metabolism of arachidonic acid to prostaglandin E2, prostaglandin F2 alpha, and prostaglandin D2 by epidermal microsomes was inhibited approximately 50% by the in vitro addition of 5-10 microM curcumin. Chlorogenic acid, caffeic acid, and ferulic acid (100 microM) were inactive. In vitro rat brain protein kinase C activity was not affected by 50-200 microM curcumin, chlorogenic acid, caffeic acid, or ferulic acid. The inhibitory effects of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on TPA-induced tumor promotion in mouse epidermis parallel their inhibitory effects on TPA-induced epidermal inflammation and epidermal lipoxygenase and cyclooxygenase activities.[1]

References

  1. Inhibitory effects of curcumin on in vitro lipoxygenase and cyclooxygenase activities in mouse epidermis. Huang, M.T., Lysz, T., Ferraro, T., Abidi, T.F., Laskin, J.D., Conney, A.H. Cancer Res. (1991) [Pubmed]
 
WikiGenes - Universities